Proton-Responsive Ligands Promote CO2 Capture and Accelerate Catalytic CO2/HCO2- Interconversion

被引:0
|
作者
Barlow, Jeffrey M. [1 ]
Gupta, Nikita [1 ,2 ]
Glusac, Ksenija D. [1 ,2 ]
Tiede, David M. [1 ]
Kaphan, David M. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[2] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
关键词
CARBON-DIOXIDE; HYDRIDE TRANSFER; COMPLEXES; FORMATE; DISPROPORTIONATION; HYDROGENATION; CHEMISTRY; INSERTION; SOLVENTS; CRYSTAL;
D O I
10.1021/acs.inorgchem.4c02092
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The synthesis and investigation of [Rh(DHMPE)(2)][BF4] (1) are reported. 1 features proton-responsive 1,2-bis[(dihydroxymethyl)phosphino]ethane (DHMPE) ligands, which readily capture CO2 from atmospheric sources upon deprotonation. The protonation state of the DHMPE ligand was observed to have a significant impact on the catalytic reactivity of 1 with CO2. Deprotonation and CO2 binding to 1 result in a similar to 10-fold rate enhancement in catalytic degenerate CO2 reduction with formate, monitored by C-12/C-13 isotope exchange between (HCO2-)-C-12 and (CO2)-C-13. Studies performed using a similar complex lacking the hydroxyl ligand functionality ([Rh(DEPE)(2)][BF4] where DEPE = 1,2-bis(diethylphosphino)ethane) do not show the same rate enhancements when base is added. Based upon the cation-dependent activity of the catalyst, Eyring analysis, and cation sequestration experiments, CO2 binding to 1 is proposed to facilitate preorganization of formate/CO2 in the transition state via ligand-based encapsulation of Na+ or K+ cations to lower the activation energy and increase the observed catalytic rate. Incorporation of proton-responsive DHMPE ligands provides a unique approach to accelerate the kinetics of catalytic CO2 reduction to formate.
引用
收藏
页码:19527 / 19535
页数:9
相关论文
共 50 条
  • [31] CO2 CAPTURE TECHNOLOGIES
    Gutierrez-Cerezales, Pablo
    Burgos-Rodriguez, Silvia
    Vigil-Montano, Ma Reyes
    DYNA, 2014, 89 (04): : 360 - 365
  • [32] CO2 Capture and Transport
    Rubin, Edward S.
    ELEMENTS, 2008, 4 (05) : 311 - 317
  • [33] CO2 capture cost
    Blankinship, Steve
    POWER ENGINEERING, 2007, 111 (11) : 40 - 40
  • [34] Fastest CO2 capture
    O'DRISCOLL, C. A. T. H.
    CHEMISTRY & INDUSTRY, 2022, 86 (06) : 8 - 8
  • [35] CO2 capture and utilization
    Anaya, Amanda M.
    Dillon, David L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [36] Limestone calcination with CO2 capture (II):: Decomposition in CO2/steam and CO2/N2 atmospheres
    Wang, Yin
    Lin, Shiying
    Suzuki, Yoshizo
    ENERGY & FUELS, 2008, 22 (04) : 2326 - 2331
  • [37] Rail to capture CO2
    King, Anthony
    CHEMISTRY & INDUSTRY, 2022, 86 (09) : 5 - 5
  • [38] Flexible proton-responsive ligand-based Mn(I) complexes for CO2 hydrogenation: a DFT study
    Rawat, Kuber Singh
    Pathak, Biswarup
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (18) : 12535 - 12542
  • [39] Theoretical studies on the IR spectra of Co2(CO)8 and the catalytic activities of HCo(CO)3 and HCo(CO)4
    Hou, Ruobing
    Yi, Xianghui
    Lu, Danmei
    Beijing Daxue Xuebao Ziran Kexue Ban/Acta Scientiarum uaturalium Universitatis Pekinensis, 2002, 38 (06):
  • [40] Alkali carbonates promote CO2 capture by sodium orthosilicate
    Liu, Jia
    Wang, Zhen
    Wang, Zirui
    Song, Jinwan
    Li, Guangshi
    Xu, Qian
    You, Jinglin
    Cheng, Hongwei
    Lu, Xionggang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (24) : 13135 - 13143