Proton-Responsive Ligands Promote CO2 Capture and Accelerate Catalytic CO2/HCO2- Interconversion

被引:0
|
作者
Barlow, Jeffrey M. [1 ]
Gupta, Nikita [1 ,2 ]
Glusac, Ksenija D. [1 ,2 ]
Tiede, David M. [1 ]
Kaphan, David M. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[2] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
关键词
CARBON-DIOXIDE; HYDRIDE TRANSFER; COMPLEXES; FORMATE; DISPROPORTIONATION; HYDROGENATION; CHEMISTRY; INSERTION; SOLVENTS; CRYSTAL;
D O I
10.1021/acs.inorgchem.4c02092
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The synthesis and investigation of [Rh(DHMPE)(2)][BF4] (1) are reported. 1 features proton-responsive 1,2-bis[(dihydroxymethyl)phosphino]ethane (DHMPE) ligands, which readily capture CO2 from atmospheric sources upon deprotonation. The protonation state of the DHMPE ligand was observed to have a significant impact on the catalytic reactivity of 1 with CO2. Deprotonation and CO2 binding to 1 result in a similar to 10-fold rate enhancement in catalytic degenerate CO2 reduction with formate, monitored by C-12/C-13 isotope exchange between (HCO2-)-C-12 and (CO2)-C-13. Studies performed using a similar complex lacking the hydroxyl ligand functionality ([Rh(DEPE)(2)][BF4] where DEPE = 1,2-bis(diethylphosphino)ethane) do not show the same rate enhancements when base is added. Based upon the cation-dependent activity of the catalyst, Eyring analysis, and cation sequestration experiments, CO2 binding to 1 is proposed to facilitate preorganization of formate/CO2 in the transition state via ligand-based encapsulation of Na+ or K+ cations to lower the activation energy and increase the observed catalytic rate. Incorporation of proton-responsive DHMPE ligands provides a unique approach to accelerate the kinetics of catalytic CO2 reduction to formate.
引用
收藏
页码:19527 / 19535
页数:9
相关论文
共 50 条
  • [21] Importance of proton transfer in CO2 capture and reduction
    Patrow, Joel
    Dawlaty, Johan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [22] CO2 Capture in the Cement Industry, Norcem CO2 Capture Project (Norway)
    Bjerge, Liv-Margrethe
    Brevik, Per
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 6455 - 6463
  • [23] Power generation with CO2 capture: Technology for CO2 purification
    Pipitone, Gabriele
    Bolland, Olav
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2009, 3 (05) : 528 - 534
  • [24] Combining CO2 capture and catalytic conversion to methane
    Bravo, Paulina Melo
    Debecker, Damien P.
    WASTE DISPOSAL & SUSTAINABLE ENERGY, 2019, 1 (01) : 53 - 65
  • [25] The CO2 economy: Review of CO2 capture and reuse technologies
    Koytsoumpa, Efthymia Ioanna
    Bergins, Christian
    Kakaras, Emmanouil
    JOURNAL OF SUPERCRITICAL FLUIDS, 2018, 132 : 3 - 16
  • [26] Combining CO2 capture and catalytic conversion to methane
    Paulina Melo Bravo
    Damien P. Debecker
    Waste Disposal & Sustainable Energy, 2019, 1 : 53 - 65
  • [27] CO2 rise found to accelerate
    Hileman, Bette
    CHEMICAL & ENGINEERING NEWS, 2007, 85 (44) : 6 - 6
  • [28] CO2 Capture Technology
    Noborisato T.
    Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2022, 91 (06): : 75 - 80
  • [29] CO2 Capture and Sequestration
    Das, Diganta Bhusan
    CLEAN TECHNOLOGIES, 2024, 6 (02): : 494 - 496
  • [30] The economics of CO2 capture
    Herzog, HJ
    GREENHOUSE GAS CONTROL TECHNOLOGIES, 1999, : 101 - 106