Explainable AI for applications in production engineering

被引:0
|
作者
Kick M.K. [1 ]
Stadter C. [1 ]
Weiß T. [1 ]
Backenstos M. [2 ]
Zäh M.F. [1 ]
机构
[1] Technische Universität München, Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb) TUM School of Engineering and Design, Boltzmannstr. 15, Garching bei München
[2] DatenBerg GmbH, Haid-und-Neu-Str. 7, Karlsruhe
来源
WT Werkstattstechnik | 2022年 / 112卷 / 03期
关键词
Optical tomography;
D O I
10.37544/1436-4980-2021-3-71
中图分类号
学科分类号
摘要
Optical coherence tomography allows for in-process monitoring of weld penetration depth during laser beam welding. Computed tomography scans are essential to validate the measurements. Depending on the material, and in some circumstances, a visual segmentation of the weld seam is hardly possible. Artificial neural networks, on the other hand, are able to identify the weld seam more reliably than humans. Explainability approaches make prediction transparent and allow for tracing back the causing features. © 2022, VDI Fachmedien GmBH & Co. KG. All rights reserved.
引用
收藏
页码:173 / 177
页数:4
相关论文
共 50 条
  • [1] Explainable AI for Software Engineering
    Tantithamthavorn, Chakkrit
    Jiarpakdee, Jirayus
    2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING ASE 2021, 2021, : 1 - 2
  • [2] Explainable AI: introducing trust and comprehensibility to AI engineering
    Burkart, Nadia
    Brajovic, Danilo
    Huber, Marco F.
    AT-AUTOMATISIERUNGSTECHNIK, 2022, 70 (09) : 787 - 792
  • [3] Explainable AI for AI validation in aseptic drug production
    Katharina, Anna
    Fleiss, Juergen
    Thalmann, Stefan
    Kainz, Philipp
    Brandstetter, Peter
    Koeth, Christoph
    PHARMAZEUTISCHE INDUSTRIE, 2022, 84 (04): : 541 - 545
  • [4] Explainable AI for Bioinformatics: Methods, Tools and Applications
    Karim, Md Rezaul
    Islam, Tanhim
    Shajalal, Md
    Beyan, Oya
    Lange, Christoph
    Cochez, Michael
    Rebholz-Schuhmann, Dietrich
    Decker, Stefan
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [5] An assessment framework for explainable AI with applications to cybersecurity
    Calzarossa, Maria Carla
    Giudici, Paolo
    Zieni, Rasha
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (05)
  • [6] Explainable AI: A review of applications to neuroimaging data
    Farahani, Farzad V.
    Fiok, Krzysztof
    Lahijanian, Behshad
    Karwowski, Waldemar
    Douglas, Pamela K.
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [7] A Rubric for Implementing Explainable AI in Production Logistics
    Singh, Amita
    Garcia, Erik Flores
    Jeong, Yongkuk
    Wiktorsson, Magnus
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: SMART MANUFACTURING AND LOGISTICS SYSTEMS: TURNING IDEAS INTO ACTION, APMS 2022, PT I, 2022, 663 : 190 - 197
  • [8] Explainable AI to understand study interest of engineering students
    Ghosh, Sourajit
    Kamal, Md. Sarwar
    Chowdhury, Linkon
    Neogi, Biswarup
    Dey, Nilanjan
    Sherratt, Robert Simon
    EDUCATION AND INFORMATION TECHNOLOGIES, 2024, 29 (04) : 4657 - 4672
  • [9] Explainable AI to understand study interest of engineering students
    Sourajit Ghosh
    Md. Sarwar Kamal
    Linkon Chowdhury
    Biswarup Neogi
    Nilanjan Dey
    Robert Simon Sherratt
    Education and Information Technologies, 2024, 29 : 4657 - 4672
  • [10] APPLICATIONS OF AI IN ENGINEERING
    FAUGHT, WS
    COMPUTER, 1986, 19 (07) : 17 - &