Explainable AI: introducing trust and comprehensibility to AI engineering

被引:0
|
作者
Burkart, Nadia [1 ]
Brajovic, Danilo [2 ]
Huber, Marco F. [2 ]
机构
[1] Fraunhofer Inst Optron Syst Technol & Image Explo, Karlsruhe, Germany
[2] Fraunhofer Inst Mfg Engn & Automat IPA, Dept Cyber Cognit Intelligence CCI, Stuttgart, Germany
关键词
explainable AI; machine learning; model refinement; data set refinement;
D O I
10.1515/auto-2022-0013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning (ML) rapidly gains increasing interest due to the continuous improvements in performance. ML is used in many different applications to support human users. The representational power of ML models allows solving difficult tasks, while making them impossible to be understood by humans. This provides room for possible errors and limits the full potential of ML, as it cannot be applied in critical environments. In this paper, we propose employing Explainable AI (xAI) for both model and data set refinement, in order to introduce trust and comprehensibility. Model refinement utilizes xAI for providing insights to inner workings of an ML model, for identifying limitations and for deriving potential improvements. Similarly, xAI is used in data set refinement to detect and resolve problems of the training data.
引用
收藏
页码:787 / 792
页数:6
相关论文
共 50 条
  • [1] AI Trust: Can Explainable AI Enhance Warranted Trust?
    Duarte, Regina de Brito
    Correia, Filipa
    Arriaga, Patricia
    Paiva, Ana
    HUMAN BEHAVIOR AND EMERGING TECHNOLOGIES, 2023, 2023
  • [2] Explainable AI for Software Engineering
    Tantithamthavorn, Chakkrit
    Jiarpakdee, Jirayus
    2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING ASE 2021, 2021, : 1 - 2
  • [3] Exploration of Explainable AI for Trust Development on Human-AI Interaction
    Bernardo, Ezekiel L.
    Seva, Rosemary R.
    PROCEEDINGS OF 2023 6TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, AICCC 2023, 2023, : 238 - 246
  • [4] Explainable AI for applications in production engineering
    Kick M.K.
    Stadter C.
    Weiß T.
    Backenstos M.
    Zäh M.F.
    WT Werkstattstechnik, 2022, 112 (03): : 173 - 177
  • [5] Is explainable AI responsible AI?
    Taylor, Isaac
    AI & SOCIETY, 2024, 40 (3) : 1695 - 1704
  • [6] Trust Indicators and Explainable AI: A Study on User Perceptions
    Ribes, Delphine
    Henchoz, Nicolas
    Portier, Helene
    Defayes, Lara
    Thanh-Trung Phan
    Gatica-Perez, Daniel
    Sonderegger, Andreas
    HUMAN-COMPUTER INTERACTION, INTERACT 2021, PT II, 2021, 12933 : 662 - 671
  • [7] Explainable AI
    Veerappa, Manjunatha
    Rinzivillo, Salvo
    ERCIM NEWS, 2023, (134):
  • [8] Explainable AI
    Anna, Monreale
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2019, 319 : 5 - 5
  • [9] Explainable AI
    Schmid, Ute
    Wrede, Britta
    KUNSTLICHE INTELLIGENZ, 2022, 36 (3-4): : 207 - 210
  • [10] Explainable AI
    Ute Schmid
    Britta Wrede
    KI - Künstliche Intelligenz, 2022, 36 : 207 - 210