Explainable AI for applications in production engineering

被引:0
|
作者
Kick M.K. [1 ]
Stadter C. [1 ]
Weiß T. [1 ]
Backenstos M. [2 ]
Zäh M.F. [1 ]
机构
[1] Technische Universität München, Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb) TUM School of Engineering and Design, Boltzmannstr. 15, Garching bei München
[2] DatenBerg GmbH, Haid-und-Neu-Str. 7, Karlsruhe
来源
WT Werkstattstechnik | 2022年 / 112卷 / 03期
关键词
Optical tomography;
D O I
10.37544/1436-4980-2021-3-71
中图分类号
学科分类号
摘要
Optical coherence tomography allows for in-process monitoring of weld penetration depth during laser beam welding. Computed tomography scans are essential to validate the measurements. Depending on the material, and in some circumstances, a visual segmentation of the weld seam is hardly possible. Artificial neural networks, on the other hand, are able to identify the weld seam more reliably than humans. Explainability approaches make prediction transparent and allow for tracing back the causing features. © 2022, VDI Fachmedien GmBH & Co. KG. All rights reserved.
引用
收藏
页码:173 / 177
页数:4
相关论文
共 50 条
  • [31] Explainable AI: Foundations, Applications, Opportunities for Data Management Research
    Pradhan, Romila
    Lahiri, Aditya
    Galhotra, Sainyam
    Salimi, Babak
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 3209 - 3212
  • [32] Recent Applications of Explainable AI (XAI): A Systematic Literature Review
    Saarela, Mirka
    Podgorelec, Vili
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [33] Extensive Review of Literature on Explainable AI (XAI) in Healthcare Applications
    Mariappan, Ramasamy
    Recent Advances in Computer Science and Communications, 2025, 18 (01)
  • [34] Survey on Explainable AI: From Approaches, Limitations and Applications Aspects
    Wenli Yang
    Yuchen Wei
    Hanyu Wei
    Yanyu Chen
    Guan Huang
    Xiang Li
    Renjie Li
    Naimeng Yao
    Xinyi Wang
    Xiaotong Gu
    Muhammad Bilal Amin
    Byeong Kang
    Human-Centric Intelligent Systems, 2023, 3 (3): : 161 - 188
  • [35] Investigation into Explainable Regression Trees for Construction Engineering Applications
    Naumets, Serhii
    Lu, Ming
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2021, 147 (08)
  • [36] AI applications in structural/construction engineering
    Garrett, JH
    Smith, IFC
    IEEE EXPERT-INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1996, 11 (03): : 20 - 22
  • [37] AI applications in structural/construction engineering
    Carnegie Mellon Univ, Pittsburgh, United States
    IEEE Expert, 3 (20-22):
  • [38] Applications of AI in classical software engineering
    Marco Barenkamp
    Jonas Rebstadt
    Oliver Thomas
    AI Perspectives, 2 (1):
  • [39] Explainable AI (ex-AI)
    Holzinger, Andreas
    Informatik-Spektrum, 2018, 41 (02) : 138 - 143
  • [40] From "Explainable AI" to "Graspable AI"
    Ghajargar, Maliheh
    Bardzell, Jeffrey
    Renner, Alison Smith
    Krogh, Peter Gall
    Hook, Kristina
    Cuartielles, David
    Boer, Laurens
    Wiberg, Mikael
    PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL CONFERENCE ON TANGIBLE, EMBEDDED, AND EMBODIED INTERACTION, TEI 2021, 2021,