Berezinskii-Kosterlitz-Thouless transition and anomalous metallic phase in a hybrid Josephson junction array

被引:0
|
作者
Bottcher, C. G. L. [1 ,5 ]
Nichele, F. [1 ,6 ]
Shabani, J. [2 ,7 ]
Palmstrom, C. J. [2 ,3 ,4 ]
Marcus, C. M. [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[2] Univ Calif Santa Barbara, Calif Nanosyst Inst, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Elect Engn, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[5] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[6] IBM Res Lab, Zurich, Switzerland
[7] New York Univ, New York, NY 10003 USA
基金
新加坡国家研究基金会;
关键词
MAGNETIC-FIELD; QUANTUM; SUPERCONDUCTIVITY; STATE; ENHANCEMENT; BEHAVIOR; FILMS;
D O I
10.1103/PhysRevB.110.L180502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the Berezinskii-Kosterlitz-Thouless (BKT) transition in a semiconductor-superconductor two-dimensional Josephson junction array. Tuned by an electrostatic top gate, the system exhibits separate superconducting (S), anomalous metal (M*), and insulating (I) phases, bordered by separatrices of the temperature-dependent sheet resistance Rs. We find that the gate-dependent BKT transition temperature falls to zero at the S-M* boundary, suggesting incomplete vortex-antivortex pairing in the M* phase. In the S phase, Rs is roughly proportional to the perpendicular magnetic field at the BKT transition, as expected, while in the M* phase, Rs deviates from its zero-field value as a power law in the field with exponent close to 1/2 at low temperature. An in-plane magnetic field eliminates the M* phase, leaving a small scaling exponent at the S-I boundary, which we interpret as a remnant of the incipient M* phase.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Berezinskii-Kosterlitz-Thouless transition in disordered multichannel Luttinger liquids
    Jones, Max
    Lerner, Igor V.
    Yurkevich, Igor V.
    PHYSICAL REVIEW B, 2017, 96 (17)
  • [42] Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films
    Mironov, Alexey Yu.
    Silevitch, Daniel M.
    Proslier, Thomas
    Postolova, Svetlana V.
    Burdastyh, Maria V.
    Gutakovskii, Anton K.
    Rosenbaum, Thomas F.
    Vinokur, Valerii V.
    Baturina, Tatyana I.
    SCIENTIFIC REPORTS, 2018, 8
  • [43] The Berezinskii-Kosterlitz-Thouless transition and correlations in the XY kagomé antiferromagnet
    V. B. Cherepanov
    I. V. Kolokolov
    E. V. Podivilov
    Journal of Experimental and Theoretical Physics Letters, 2001, 74 : 596 - 599
  • [44] Transition from the Bose-Einstein condensate to the Berezinskii-Kosterlitz-Thouless phase
    Simula, TP
    Lee, MD
    Hutchinson, DAW
    PHILOSOPHICAL MAGAZINE LETTERS, 2005, 85 (08) : 395 - 403
  • [45] Sharpness of the Berezinskii-Kosterlitz-Thouless Transition in Disordered NbN Films
    Weitzel, Alexander
    Pfaffinger, Lea
    Maccari, Ilaria
    Kronfeldner, Klaus
    Huber, Thomas
    Fuchs, Lorenz
    Mallord, James
    Linzen, Sven
    Il'Ichev, Evgeni
    Paradiso, Nicola
    Strunk, Christoph
    PHYSICAL REVIEW LETTERS, 2023, 131 (08)
  • [46] Berezinskii-Kosterlitz-Thouless transition of ultracold atoms in optical lattice
    Zaleski, T. A.
    Kopec, T. K.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2017, 50 (08)
  • [47] THEORY OF NEMATIC SURFACE ORDERING VIA A BEREZINSKII-KOSTERLITZ-THOULESS PHASE-TRANSITION
    HORNREICH, RM
    KATS, EI
    LEBEDEV, VV
    PHYSICAL REVIEW A, 1992, 46 (08): : 4935 - 4941
  • [48] Berezinskii-Kosterlitz-Thouless phase in two-dimensional ferroelectrics
    Xu, Changsong
    Nahas, Yousra
    Prokhorenko, Sergei
    Xiang, Hongjun
    Bellaiche, L.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [49] Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY Models
    Bighin, Giacomo
    Defenu, Nicolo
    Nandori, Istvan
    Salasnich, Luca
    Trombettoni, Andrea
    PHYSICAL REVIEW LETTERS, 2019, 123 (10)
  • [50] Berezinskii-Kosterlitz-Thouless phase transition in a 2D-XY ferromagnetic monolayer
    Jiesu Wang
    Journal of Semiconductors, 2021, 42 (12) : 16 - 18