Berezinskii-Kosterlitz-Thouless transition and anomalous metallic phase in a hybrid Josephson junction array

被引:0
|
作者
Bottcher, C. G. L. [1 ,5 ]
Nichele, F. [1 ,6 ]
Shabani, J. [2 ,7 ]
Palmstrom, C. J. [2 ,3 ,4 ]
Marcus, C. M. [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[2] Univ Calif Santa Barbara, Calif Nanosyst Inst, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Elect Engn, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[5] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[6] IBM Res Lab, Zurich, Switzerland
[7] New York Univ, New York, NY 10003 USA
基金
新加坡国家研究基金会;
关键词
MAGNETIC-FIELD; QUANTUM; SUPERCONDUCTIVITY; STATE; ENHANCEMENT; BEHAVIOR; FILMS;
D O I
10.1103/PhysRevB.110.L180502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the Berezinskii-Kosterlitz-Thouless (BKT) transition in a semiconductor-superconductor two-dimensional Josephson junction array. Tuned by an electrostatic top gate, the system exhibits separate superconducting (S), anomalous metal (M*), and insulating (I) phases, bordered by separatrices of the temperature-dependent sheet resistance Rs. We find that the gate-dependent BKT transition temperature falls to zero at the S-M* boundary, suggesting incomplete vortex-antivortex pairing in the M* phase. In the S phase, Rs is roughly proportional to the perpendicular magnetic field at the BKT transition, as expected, while in the M* phase, Rs deviates from its zero-field value as a power law in the field with exponent close to 1/2 at low temperature. An in-plane magnetic field eliminates the M* phase, leaving a small scaling exponent at the S-I boundary, which we interpret as a remnant of the incipient M* phase.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Suppression effect on the Berezinskii-Kosterlitz-Thouless transition in growing networks
    Oh, S. M.
    Son, S-W
    Kahng, B.
    PHYSICAL REVIEW E, 2018, 98 (06)
  • [32] The Berezinskii-Kosterlitz-Thouless transition and correlations in the XY kagome antiferromagnet
    Cherepanov, VB
    Kolokolov, IV
    Podivilov, EV
    JETP LETTERS, 2001, 74 (12) : 596 - 599
  • [33] Berezinskii-Kosterlitz-Thouless Transition of Two-Component Bose Mixtures with Intercomponent Josephson Coupling
    Kobayashi, Michikazu
    Eto, Minoru
    Nitta, Muneto
    PHYSICAL REVIEW LETTERS, 2019, 123 (07)
  • [34] Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet
    Hu, Ze
    Ma, Zhen
    Liao, Yuan-Da
    Li, Han
    Ma, Chunsheng
    Cui, Yi
    Shangguan, Yanyan
    Huang, Zhentao
    Qi, Yang
    Li, Wei
    Meng, Zi Yang
    Wen, Jinsheng
    Yu, Weiqiang
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [35] Phase transition with the Berezinskii-Kosterlitz-Thouless singularity in the Ising model on a growing network
    Bauer, M
    Coulomb, S
    Dorogovtsev, SN
    PHYSICAL REVIEW LETTERS, 2005, 94 (20)
  • [36] Berezinskii-Kosterlitz-Thouless transition from neural network flows
    Ng, Kwai-Kong
    Huang, Ching-Yu
    Lin, Feng-Li
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [37] Unconventional Berezinskii-Kosterlitz-Thouless Transition in the Multicomponent Polariton System
    Dagvadorj, G.
    Comaron, P.
    Szyma, M. H.
    PHYSICAL REVIEW LETTERS, 2023, 130 (13)
  • [38] Berezinskii-Kosterlitz-Thouless transition in homogeneously disordered superconducting films
    Koenig, E. J.
    Levchenko, A.
    Protopopov, I. V.
    Gornyi, I. V.
    Burmistrov, I. S.
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2015, 92 (21)
  • [39] Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting
    Ryzhov, V. N.
    Tareyeva, E. E.
    Fomin, Yu D.
    Tsiok, E. N.
    PHYSICS-USPEKHI, 2017, 60 (09) : 857 - 885
  • [40] Simulating the Berezinskii-Kosterlitz-Thouless transition with the complex Langevin algorithm
    Heinen, Philipp
    Gasenzer, Thomas
    PHYSICAL REVIEW A, 2023, 108 (05)