L1 Estimation: On the Optimality of Linear Estimators

被引:0
|
作者
Barnes, Leighton P. [1 ]
Dytso, Alex [2 ]
Liu, Jingbo [3 ,4 ]
Poor, H. Vincent [5 ]
机构
[1] Ctr Commun Res, Princeton, NJ 08540 USA
[2] Qualcomm Flar Technol Inc, Bridgewater, NJ 08807 USA
[3] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[4] Univ Illinois, Dept Elect & Comp Engn, Champaign, IL 61820 USA
[5] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Linearity; Bayes methods; Noise; Random variables; Gaussian distribution; Gaussian noise; Estimation; Conditional median; conditional mean; mean absolute error; Fourier transform; tempered distributions; exponential family; poisson distribution; mean square error; random variables; posterior probability; additive noise; input distribution; GAUSSIAN-NOISE; CONJUGATE PRIORS; MEDIANS; CHANNEL; ERROR;
D O I
10.1109/TIT.2024.3440929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider the problem of estimating a random variable X from noisy observations Y = X + Z, where Z is standard normal, under the L-1 fidelity criterion. It is well known that the optimal Bayesian estimator in this setting is the conditional median. This work shows that the only prior distribution on X that induces linearity in the conditional median is Gaussian. Along the way, several other results are presented. In particular, it is demonstrated that if the conditional distribution P-X|Y = y is symmetric for all y, then X must follow a Gaussian distribution. Additionally, we consider other Lp losses and observe the following phenomenon: for p is an element of [1, 2], Gaussian is the only prior distribution that induces a linear optimal Bayesian estimator, and for p is an element of (2, infinity), infinitely many prior distributions on X can induce linearity. Finally, extensions are provided to encompass noise models leading to conditional distributions from certain exponential families.
引用
收藏
页码:8026 / 8039
页数:14
相关论文
共 50 条
  • [41] L1 SUBSPACES OF L1
    ZIPPIN, M
    ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (02) : 110 - 117
  • [42] l∞(l1) and l1(l∞) are not isomorphic
    Cembranos, Pilar
    Mendoza, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 295 - 297
  • [43] L1 penalty and shrinkage estimation in partially linear models with random coefficient autoregressive errors
    Fallahpour, Saber
    Ahmed, S. Ejaz
    Doksum, Kjell A.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2012, 28 (03) : 236 - 250
  • [44] Robust Linear Estimation using M-estimation and Weighted L1 Regularization: Model Selection and Recursive Implementation
    Zhang, Z. G.
    Chan, S. C.
    Zhou, Y.
    Hu, Y.
    ISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5, 2009, : 1193 - +
  • [45] FITTING A GROUNDWATER CONTAMINANT TRANSPORT MODEL BY L1 AND L2 PARAMETER ESTIMATORS
    XIANG, YY
    THOMSON, NR
    SYKES, JF
    ADVANCES IN WATER RESOURCES, 1992, 15 (05) : 303 - 310
  • [46] Optimality of novel estimators for variance estimation under successive sampling
    Bhushan, Shashi
    Pandey, Shailja
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [47] A LINEAR-TIME ALGORITHM FOR LINEAR L1 APPROXIMATION OF POINTS
    IMAI, H
    KATO, K
    YAMAMOTO, P
    ALGORITHMICA, 1989, 4 (01) : 77 - 96
  • [48] ON THE L1 CONVERGENCE OF KERNEL ESTIMATORS OF REGRESSION-FUNCTIONS WITH APPLICATIONS IN DISCRIMINATION
    DEVROYE, LP
    WAGNER, TJ
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 51 (01): : 15 - 25
  • [49] THE L1 SOLUTION OF LINEAR-EQUATIONS SUBJECT TO LINEAR CONSTRAINTS
    DAX, A
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (02): : 328 - 340
  • [50] Local geometry of L1 ∩ L∞ and L1 + L∞
    Hudzik H.
    Kamińska A.
    Mastyło M.
    Archiv der Mathematik, 1997, 68 (2) : 159 - 168