L1 Estimation: On the Optimality of Linear Estimators

被引:0
|
作者
Barnes, Leighton P. [1 ]
Dytso, Alex [2 ]
Liu, Jingbo [3 ,4 ]
Poor, H. Vincent [5 ]
机构
[1] Ctr Commun Res, Princeton, NJ 08540 USA
[2] Qualcomm Flar Technol Inc, Bridgewater, NJ 08807 USA
[3] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[4] Univ Illinois, Dept Elect & Comp Engn, Champaign, IL 61820 USA
[5] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Linearity; Bayes methods; Noise; Random variables; Gaussian distribution; Gaussian noise; Estimation; Conditional median; conditional mean; mean absolute error; Fourier transform; tempered distributions; exponential family; poisson distribution; mean square error; random variables; posterior probability; additive noise; input distribution; GAUSSIAN-NOISE; CONJUGATE PRIORS; MEDIANS; CHANNEL; ERROR;
D O I
10.1109/TIT.2024.3440929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider the problem of estimating a random variable X from noisy observations Y = X + Z, where Z is standard normal, under the L-1 fidelity criterion. It is well known that the optimal Bayesian estimator in this setting is the conditional median. This work shows that the only prior distribution on X that induces linearity in the conditional median is Gaussian. Along the way, several other results are presented. In particular, it is demonstrated that if the conditional distribution P-X|Y = y is symmetric for all y, then X must follow a Gaussian distribution. Additionally, we consider other Lp losses and observe the following phenomenon: for p is an element of [1, 2], Gaussian is the only prior distribution that induces a linear optimal Bayesian estimator, and for p is an element of (2, infinity), infinitely many prior distributions on X can induce linearity. Finally, extensions are provided to encompass noise models leading to conditional distributions from certain exponential families.
引用
收藏
页码:8026 / 8039
页数:14
相关论文
共 50 条
  • [31] Robust L1 Estimators for Interconnected AC/DC Power Systems
    Mouco, Arthur
    Ahur, Ali
    2019 IEEE MILAN POWERTECH, 2019,
  • [32] LINEAR GROUPS OF C AND L1 ARE CONTRACTIBLE
    EDELSTEIN, I
    MITJAGIN, B
    SEMENOV, E
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1970, 18 (01): : 27 - +
  • [33] CENSORED DISCRETE LINEAR L1 APPROXIMATION
    WOMERSLEY, RS
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (01): : 105 - 122
  • [34] l1 regressions: Gini estimators for fixed effects panel data
    Ka, Ndene
    Mussard, Stephane
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (08) : 1436 - 1446
  • [35] Sparse density estimation with l1 penalties
    Bunea, Florentina
    Tsybakov, Alexandre B.
    Wegkamp, Marten H.
    LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 530 - +
  • [36] DIMENSION OF LINEAR SPACE L (L1 L2)
    RAKESTRA.RM
    YATES, JH
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (09): : 1180 - &
  • [37] IsometricandAlmostIsometricOperatorsofB(L1→L1)
    定光桂
    ActaMathematicaSinica, 1985, (02) : 126 - 140
  • [38] A cooperative recurrent neural network for solving L1 estimation problems with general linear constraints
    Xia, Youshen
    Kamel, Mohamed S.
    NEURAL COMPUTATION, 2008, 20 (03) : 844 - 872
  • [39] Fast interval estimation for discrete-time linear systems: An L1 optimization method
    Wang, Zhenhua
    Dinh, Thach Ngoc
    Zhang, Qinghua
    Raissi, Tarek
    Shen, Yi
    AUTOMATICA, 2022, 137
  • [40] RECURSIVE ALGORITHM FOR DISCRETE L1 LINEAR ESTIMATION USING THE DUAL SIMPLEX METHOD.
    Abdelmalek, Nabih N.
    IEEE Transactions on Systems, Man and Cybernetics, 1985, SMC-15 (06): : 737 - 742