5.5 GHz film bulk acoustic wave filters using thin film transfer process for WLAN applications

被引:0
|
作者
Yang, Tingting [1 ]
Gao, Chao [1 ]
Wang, Yaxin [1 ]
Lin, Binghui [1 ]
Zheng, Yupeng [1 ]
Liu, Yan [1 ,2 ,3 ]
Lei, Cheng [1 ]
Sun, Chengliang [1 ,2 ,3 ]
Cai, Yao [1 ,2 ,3 ]
机构
[1] Wuhan Univ, Inst Technol Sci, Hubei Key Lab Elect Mfg & Packaging Integrat, Wuhan 430072, Peoples R China
[2] Hubei Yangtze Memory Labs, Wuhan 430205, Peoples R China
[3] Wuhan Univ, Sch Microelect, Wuhan 430072, Peoples R China
来源
MICROSYSTEMS & NANOENGINEERING | 2024年 / 10卷 / 01期
基金
国家重点研发计划; 中国国家自然科学基金; 美国国家科学基金会;
关键词
Acoustic bulk wave devices - Acoustic resonators - Acoustic surface wave filters - Aluminum nitride - Bandpass filters - Crystal filters - Gallium compounds - Gluing - Hard facing - Silicon wafers - Wafer bonding - Wireless local area networks (WLAN);
D O I
10.1038/s41378-024-00820-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Wireless local area network (WLAN) has gained widespread application as a convenient network access method, demanding higher network efficiency, stability, and responsiveness. High-performance filters are crucial components to meet these needs. Film bulk acoustic resonators (FBARs) are ideal for constructing these filters due to their high-quality factor (Q) and low loss. In conventional air-gap type FBAR, aluminum nitride (AlN) is deposited on the sacrificial layer with poor crystallinity. Additionally, FBARs with single-crystal AlN have high internal stress and complicated fabrication process. These limit the development of FBARs to higher frequencies above 5 GHz. This paper presents the design and fabrication of FBARs and filters for WLAN applications, combining the high electromechanical coupling coefficient (Kt2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K}_{{\rm{t}}}<^>{2}$$\end{document}) of Al0.8Sc0.2N film with the advantages of the thin film transfer process. An AlN seed layer and 280 nm-thick Al0.8Sc0.2N are deposited on a Si substrate via physical vapor deposition (PVD), achieving a full width at half maximum (FWHM) of 2.1 degrees. The ultra-thin film is then transferred to another Si substrate by wafer bonding, flipping, and Si removal. Integrating conventional manufacturing processes, an FBAR with a resonant frequency reaching 5.5 GHz is fabricated, demonstrating a large effective electromechanical coupling coefficient (keff2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{k}}_{{\rm{eff}}}<^>{2}$$\end{document}) of 13.8% and an excellent figure of merit (FOM) of 85. A lattice-type filter based on these FBARs is then developed for the Wi-Fi UNII-2 band, featuring a center frequency of 5.5 GHz and a -3 dB bandwidth of 306 MHz, supporting high data rates and large throughputs in WLAN applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Intrinsically switchable thin film bulk acoustic wave resonators
    Vorobiev, A.
    Gevorgian, S.
    APPLIED PHYSICS LETTERS, 2014, 104 (22)
  • [32] Thin film bulk acoustic wave resonator and filter technology
    Lakin, KM
    McCarron, KT
    Belsick, J
    McDonald, JF
    RAWCON 2001: IEEE RADIO AND WIRELESS CONFERENCE, PROCEEDINGS, 2001, : 89 - 92
  • [33] Simulation and fabrication of thin film bulk acoustic wave resonator
    韩茜茜
    欧毅
    李志刚
    欧文
    陈大鹏
    叶甜春
    Journal of Semiconductors, 2016, 37 (07) : 90 - 95
  • [34] Switched Mode Thin Film Bulk Acoustic Wave Resonators
    Koohi, Milad Zolfagharloo
    Mortazawi, Amir
    2019 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2019, : 528 - 531
  • [35] Simulation and fabrication of thin film bulk acoustic wave resonator
    Han Xixi
    Ou Yi
    Li Zhigang
    Ou Wen
    Chen Dapeng
    Ye Tianchun
    JOURNAL OF SEMICONDUCTORS, 2016, 37 (07)
  • [36] Thin film piezoelectrics for bulk acoustic wave (BAW) acoustophoresis
    Reichert, Peter
    Deshmukh, Dhananjay
    Lebovitz, Lukas
    Dual, Jurg
    LAB ON A CHIP, 2018, 18 (23) : 3655 - 3667
  • [37] THICKNESS-EXTENSIONAL TRAPPED ENERGY VIBRATION OF ZNO THIN FILM BULK ACOUSTIC WAVE FILTERS
    Zhao, Zi-nan
    Qian, Zheng-hua
    Wang, Bin
    PROCEEDINGS OF 2016 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS (SPAWDA), 2016, : 23 - 26
  • [38] Characterization of nanomechanical and piezoelectric properties of AlN thin film for thin film bulk acoustic wave resonators
    Chen, Qingming
    Li, Fang
    Wang, Qing-Ming
    MICRO (MEMS) AND NANOTECHNOLOGIES FOR SPACE APPLICATIONS, 2006, 6223
  • [39] MEMS in RF-filter applications: Thin film bulk-acoustic-wave technology
    Aigner, R
    Transducers '05, Digest of Technical Papers, Vols 1 and 2, 2005, : 5 - 8
  • [40] The modeling of thin-film bulk acoustic wave resonators using the FDTD method
    Seo, KW
    Ju, S
    Kim, H
    IEEE ELECTRON DEVICE LETTERS, 2002, 23 (06) : 327 - 329