MPLNet: Multi-task supervised progressive learning network for diabetic retinopathy grading

被引:0
|
作者
Xie, Yining [1 ]
Zhang, Yuhang [2 ]
Long, Jun [1 ]
Que, Nanshuang [2 ]
Chen, Yu [2 ]
机构
[1] Northeast Forestry Univ, Coll Mech & Elect Engn, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
关键词
Diabetic retinopathy grading; Attention mechanism; Progressive learning (PL);
D O I
10.1016/j.compeleceng.2024.109746
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic Retinopathy (DR) is a retinal disease resulting from diabetes. In severe cases, it can lead to irreversible damage to the retina or even blindness. Employing deep learning models to assist in DR diagnosis and classification can alleviate the burden of screening. However, challenges such as the tendency of models to overlook subtle lesions (e.g., microaneurysms) in retinal images and the imbalance in DR data distribution hinder accurate grading. To address these issues, this paper proposes a multi-task supervised progressive learning network (MPLNet) consisting of a Lesion-aware feature extraction Module (LFM) and a Category feature extraction Module (CFM). The network utilizes two progressive tasks - DR identification and DR grading - to guide the LFM and CFM in extracting comprehensive lesion information and then learning discriminative features for each category, thereby enhancing the performance of DR grading. Additionally, to improve the feature extraction capabilities of the two modules, this paper introduces the Detail Attention Module (DAM) and the Category Attention Module (CAM). DAM enhances the detection ability of tiny abnormal areas in the retinal images from both channel and spatial dimensions. The CAM thoroughly explores the critical features of each category from multiple dimensions, thereby reducing the impact of data imbalance. The proposed method achieved kappa scores of 87.0%, 88.2%, and 93.0% on the DDR, Messidor-2, and APTOS datasets, respectively. Experimental results demonstrate that MPLNet outperforms other DR grading methods. T-SNE and Grad-CAM visualization techniques verify the interpretability of the model.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Semi-supervised Multi-task Learning with Auxiliary data
    Liu, Bo
    Chen, Qihang
    Xiao, Yanshan
    Wang, Kai
    Liu, Junrui
    Huang, Ruiguang
    Li, Liangjiao
    INFORMATION SCIENCES, 2023, 626 : 626 - 639
  • [32] Weakly Supervised Multi-Task Learning for Cell Detection and Segmentation
    Chamanzar, Alireza
    Nie, Yao
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 513 - 516
  • [33] Multi-Task Self-Supervised Learning for Disfluency Detection
    Wang, Shaolei
    Che, Wanxiang
    Liu, Qi
    Qin, Pengda
    Liu, Ting
    Wang, William Yang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9193 - 9200
  • [34] Multi-task Self-Supervised Adaptation for Reinforcement Learning
    Wu, Keyu
    Chen, Zhenghua
    Wu, Min
    Xiang, Shili
    Jin, Ruibing
    Zhang, Le
    Li, Xiaoli
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 15 - 20
  • [35] Semi-Supervised Depth Estimation by Multi-Task Learning
    Fu, Qingshun
    Dong, Xuan
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3765 - 3771
  • [36] SUPERVISED CHORUS DETECTION FOR POPULAR MUSIC USING CONVOLUTIONAL NEURAL NETWORK AND MULTI-TASK LEARNING
    Wang, Ju-Chiang
    Smith, Jordan B. L.
    Chen, Jitong
    Song, Xuchen
    Wang, Yuxuan
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 566 - 570
  • [37] PLDMLT: Multi-Task Learning of Diabetic Retinopathy Using the Pixel-Level Labeled Fundus Images
    Liu, Hengyang
    Huang, Chuncheng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (02): : 1745 - 1761
  • [38] Multi-task gradient descent for multi-task learning
    Lu Bai
    Yew-Soon Ong
    Tiantian He
    Abhishek Gupta
    Memetic Computing, 2020, 12 : 355 - 369
  • [39] Multi-task gradient descent for multi-task learning
    Bai, Lu
    Ong, Yew-Soon
    He, Tiantian
    Gupta, Abhishek
    MEMETIC COMPUTING, 2020, 12 (04) : 355 - 369
  • [40] Multi-scale multi-attention network for diabetic retinopathy grading
    Xia, Haiying
    Long, Jie
    Song, Shuxiang
    Tan, Yumei
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (01):