Multi-scale multi-attention network for diabetic retinopathy grading

被引:1
|
作者
Xia, Haiying [1 ]
Long, Jie [1 ]
Song, Shuxiang [1 ]
Tan, Yumei [2 ]
机构
[1] Guangxi Normal Univ, Sch Elect & Informat Engn, Guilin 541004, Peoples R China
[2] Guangxi Normal Univ, Sch Comp Sci & Engn, Guilin 541004, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2024年 / 69卷 / 01期
基金
中国国家自然科学基金;
关键词
diabetic retinopathy grading; lesions attention module; multi-scale feature fusion module; CONVOLUTIONAL NEURAL-NETWORK; SYSTEM; DIAGNOSIS;
D O I
10.1088/1361-6560/ad111d
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Diabetic retinopathy (DR) grading plays an important role in clinical diagnosis. However, automatic grading of DR is challenging due to the presence of intra-class variation and small lesions. On the one hand, deep features learned by convolutional neural networks often lose valid information about these small lesions. On the other hand, the great variability of lesion features, including differences in type and quantity, can exhibit considerable divergence even among fundus images of the same grade. To address these issues, we propose a novel multi-scale multi-attention network (MMNet). Approach. Firstly, to focus on different lesion features of fundus images, we propose a lesion attention module, which aims to encode multiple different lesion attention feature maps by combining channel attention and spatial attention, thus extracting global feature information and preserving diverse lesion features. Secondly, we propose a multi-scale feature fusion module to learn more feature information for small lesion regions, which combines complementary relationships between different convolutional layers to capture more detailed feature information. Furthermore, we introduce a Cross-layer Consistency Constraint Loss to overcome semantic differences between multi-scale features. Main results. The proposed MMNet obtains a high accuracy of 86.4% and a high kappa score of 88.4% for multi-class DR grading tasks on the EyePACS dataset, while 98.6% AUC, 95.3% accuracy, 92.7% recall, 95.0% precision, and 93.3% F1-score for referral and non-referral classification on the Messidor-1 dataset. Extensive experiments on two challenging benchmarks demonstrate that our MMNet achieves significant improvements and outperforms other state-of-the-art DR grading methods. Significance. MMNet has improved the diagnostic efficiency and accuracy of diabetes retinopathy and promoted the application of computer-aided medical diagnosis in DR screening.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Diabetic Retinopathy Grading Using Multi-scale Residual Network with Grouped Channel Attention
    Rajan, Rajeev
    Noumida, A.
    Aparna, S.
    Madhurema, V. J.
    Nair, Nandana
    Mohan, Parvathi
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1671 - 1675
  • [2] Multi-Scale Attention Network for Diabetic Retinopathy Classification
    Al-Antary, Mohammad T.
    Arafa, Yasmine
    IEEE ACCESS, 2021, 9 : 54190 - 54200
  • [3] Diabetic retinopathy grading based on multi-scale residual network and cross-attention module
    Singh, Atul Kumar
    Madarapu, Sandeep
    Ari, Samit
    DIGITAL SIGNAL PROCESSING, 2025, 157
  • [4] A Multi-scale and Multi-attention Network for Skin Lesion Segmentation
    Wu, Cong
    Zhang, Hang
    Chen, Dingsheng
    Gan, Haitao
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 537 - 550
  • [5] A multi-scale multi-attention network for dynamic facial expression recognition
    Xiaohan Xia
    Le Yang
    Xiaoyong Wei
    Hichem Sahli
    Dongmei Jiang
    Multimedia Systems, 2022, 28 : 479 - 493
  • [6] A multi-scale multi-attention network for dynamic facial expression recognition
    Xia, Xiaohan
    Yang, Le
    Wei, Xiaoyong
    Sahli, Hichem
    Jiang, Dongmei
    MULTIMEDIA SYSTEMS, 2022, 28 (02) : 479 - 493
  • [7] Multi-scale Multi-attention Network for Moire Document Image Binarization
    Guo, Yanqing
    Ji, Caijuan
    Zheng, Xin
    Wang, Qianyu
    Luo, Xiangyang
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 90
  • [8] MSEF-Net: A multi-scale EfficientNet Fusion for Diabetic Retinopathy grading
    Fu, Yinghua
    Ju, Yiwen
    Zhang, Dawei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 98
  • [9] A graph convolutional network with dynamic weight fusion of multi-scale local features for diabetic retinopathy grading
    Wang, Yipeng
    Wang, Liejun
    Guo, Zhiqing
    Song, Shiji
    Li, Yanhong
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [10] A graph convolutional network with dynamic weight fusion of multi-scale local features for diabetic retinopathy grading
    Yipeng Wang
    Liejun Wang
    Zhiqing Guo
    Shiji Song
    Yanhong Li
    Scientific Reports, 14