ES-GNN: Generalizing Graph Neural Networks Beyond Homophily With Edge Splitting

被引:0
|
作者
Guo, Jingwei [1 ,2 ]
Huang, Kaizhu [3 ]
Zhang, Rui [2 ]
Yi, Xinping [4 ]
机构
[1] University Of Liverpool, Liverpool,L69 7ZX, United Kingdom
[2] Xi'an Jiaotong-Liverpool University, Suzhou,215000, China
[3] Duke Kunshan University, Suzhou,215316, China
[4] Southeast University, Nanjing,210096, China
基金
中国国家自然科学基金;
关键词
Disentangled representation learning - Edge-splitting - Graph mining - Graph neural networks - Heterophilic graph - Homophily - Inductive bias - Real-world networks - Subgraphs - Task relevant;
D O I
暂无
中图分类号
学科分类号
摘要
102
引用
收藏
页码:11345 / 11360
相关论文
共 50 条
  • [31] DAG-GNN: DAG Structure Learning with Graph Neural Networks
    Yu, Yue
    Chen, Jie
    Gao, Tian
    Yu, Mo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [32] AIC-GNN: Adversarial information completion for graph neural networks
    Wei, Quanmin
    Wang, Jinyan
    Fu, Xingcheng
    Hu, Jun
    Li, Xianxian
    INFORMATION SCIENCES, 2023, 626 : 166 - 179
  • [33] LeDA-GNN: Learnable dual augmentation for graph neural networks
    Liu, Gen
    Zhao, Zhongying
    Li, Chao
    Yu, Yanwei
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [34] Tail-GNN: Tail-Node Graph Neural Networks
    Liu, Zemin
    Trung-Kien Nguyen
    Fang, Yuan
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1109 - 1119
  • [35] GNN at the Edge: Cost-Efficient Graph Neural Network Processing Over Distributed Edge Servers
    Zeng, Liekang
    Yang, Chongyu
    Huang, Peng
    Zhou, Zhi
    Yu, Shuai
    Chen, Xu
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (03) : 720 - 739
  • [36] Meta-Weight Graph Neural Network: Push the Limits Beyond Global Homophily
    Ma, Xiaojun
    Chen, Qin
    Ren, Yuanyi
    Song, Guojie
    Wang, Liang
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1270 - 1280
  • [37] NED-GNN: Detecting and Dropping Noisy Edges in Graph Neural Networks
    Xu, Ming
    Zhang, Baoming
    Yuan, Jinliang
    Cao, Meng
    Wang, Chongjun
    WEB AND BIG DATA, PT I, APWEB-WAIM 2022, 2023, 13421 : 91 - 105
  • [38] GPT-GNN: Generative Pre-Training of Graph Neural Networks
    Hu, Ziniu
    Dong, Yuxiao
    Wang, Kuansan
    Chang, Kai-Wei
    Sun, Yizhou
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1857 - 1867
  • [39] CCP-GNN: Competitive Covariance Pooling for Improving Graph Neural Networks
    Zhu, Pengfei
    Li, Jialu
    Dong, Zhe
    Hu, Qinghua
    Wang, Xiao
    Wang, Qilong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 12
  • [40] Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity
    Ding, Mucong
    Rabbani, Tahseen
    An, Bang
    Wang, Evan Z.
    Huang, Furong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,