NED-GNN: Detecting and Dropping Noisy Edges in Graph Neural Networks

被引:0
|
作者
Xu, Ming [1 ,2 ]
Zhang, Baoming [1 ,2 ]
Yuan, Jinliang [1 ,2 ]
Cao, Meng [1 ,2 ]
Wang, Chongjun [1 ,2 ]
机构
[1] State Key Lab Novel Software Technol, Nanjing, Peoples R China
[2] Nanjing Univ, Nanjing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Graph neural networks; Noisy edges; Graph learning; Data mining;
D O I
10.1007/978-3-031-25158-0_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks have become the standard learning architectures in graph-based learning and achieve great progress in real-world tasks. Existing graph neural network methods are mostly based on message passing neural network(MPNN), which aggregates messages from neighbor nodes to update representations of target nodes. The framework follows the assumption of homophily that nodes linked by edges are similar and share the same labels. In the real world, the graphs can mostly follow the assumption. However, for nodes in the graph, the connections between nodes are not always connecting two similar nodes. We regard the edges as noisy edges. Such edges will introduce noise to message passing in the training process and hurt the performance of graph neural networks. To figure out the noisy edges and alleviate their influence, we propose the framework called Noisy Edge Dropping Graph Neural Network, short as NED-GNN. By evaluating the weights between sampled negative edges and existing edges for each node, NED-GNN detects and removes noisy edges. Extensive experiments are conducted on benchmark datasets and the promising performance compared with baseline methods indicates the effectiveness of our model.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 50 条
  • [1] GNN2GNN: Graph Neural Networks to Generate Neural Networks
    Agiollo, Andrea
    Omicini, Andrea
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 32 - 42
  • [2] Auto-GNN: Neural architecture search of graph neural networks
    Zhou, Kaixiong
    Huang, Xiao
    Song, Qingquan
    Chen, Rui
    Hu, Xia
    FRONTIERS IN BIG DATA, 2022, 5
  • [3] DropMessage: Unifying Random Dropping for Graph Neural Networks
    Fang, Taoran
    Xiao, Zhiqing
    Wang, Chunping
    Xu, Jiarong
    Yang, Xuan
    Yang, Yang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4267 - 4275
  • [4] HGK-GNN: Heterogeneous Graph Kernel based Graph Neural Networks
    Long, Qingqing
    Xu, Lingjun
    Fang, Zheng
    Song, Guojie
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1129 - 1138
  • [5] Policy-GNN: Aggregation Optimization for Graph Neural Networks
    Lai, Kwei-Herng
    Zha, Daochen
    Zhou, Kaixiong
    Hu, Xia
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 461 - 471
  • [6] GNN-Retro: Retrosynthetic Planning with Graph Neural Networks
    Han, Peng
    Zhao, Peilin
    Lu, Chan
    Huang, Junzhou
    Wu, Jiaxiang
    Shang, Shuo
    Yao, Bin
    Zhang, Xiangliang
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 4014 - 4021
  • [7] Circuit-GNN: Graph Neural Networks for Distributed Circuit Design
    Zhang, Guo
    He, Hao
    Katabi, Dina
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [8] GNN4GC-Graph Neural Networks for Grid Control
    Hosseini, Ilia
    Dietz, Thomas
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2024, 141 (7-8): : 464 - 467
  • [9] FP-GNN: Adaptive FPGA accelerator for Graph Neural Networks
    Tian, Teng
    Zhao, Letian
    Wang, Xiaotian
    Wu, Qizhe
    Yuan, Wei
    Jin, Xi
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 136 : 294 - 310
  • [10] Barriers for the performance of graph neural networks (GNN) in discrete random structures
    Weitz, David
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (46)