Client Selection for Wireless Federated Learning With Data and Latency Heterogeneity

被引:0
|
作者
Chen, Xiaobing [1 ]
Zhou, Xiangwei [1 ]
Zhang, Hongchao [2 ]
Sun, Mingxuan [3 ]
Vincent Poor, H. [4 ]
机构
[1] Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Div Comp Sci & Engn, Baton Rouge, LA 70803 USA
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 70803 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 19期
基金
美国国家科学基金会;
关键词
Training; Federated learning; Computational modeling; Data models; Convergence; Servers; Probabilistic logic; Client selection; data heterogeneity; federated learning; latency heterogeneity; optimization;
D O I
10.1109/JIOT.2024.3425757
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a distributed machine learning paradigm that allows multiple edge devices to collaboratively train a shared model without exchanging raw data. However, the training efficiency of federated learning is highly dependent on client selection. Moreover, due to the varying wireless communication environments and various computation latencies among the clients, selecting clients randomly or uniformly may not be optimal for balancing the data diversity and training efficiency. In this article, we formulate a new latency-minimization problem that simultaneously optimizes client selection and training procedures in federated learning, which takes into account the data and latency heterogeneity among the clients. Given the nonconvexity of the problem, we derive a new convergence upper bound for federated learning with probabilistic client selection. To solve the mixed integer nonlinear programming problem, we introduce a hybrid solution that integrates grid search techniques with the polyhedral active set algorithm. Numerical analyses and experiments on real-world data demonstrate that our scheme outperforms the existing ones in terms of overall training latency and achieves up to three times acceleration over random client selection, especially in scenarios with highly heterogeneous data and latencies among the clients.
引用
收藏
页码:32183 / 32196
页数:14
相关论文
共 50 条
  • [21] Towards Client Selection in Satellite Federated Learning
    Wu, Changhao
    He, Siyang
    Yin, Zengshan
    Guo, Chongbin
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [22] A review on client selection models in federated learning
    Panigrahi, Monalisa
    Bharti, Sourabh
    Sharma, Arun
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (06)
  • [23] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [24] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [25] A Review of Client Selection Methods in Federated Learning
    Mayhoub S.
    M. Shami T.
    Archives of Computational Methods in Engineering, 2024, 31 (02) : 1129 - 1152
  • [26] Client Selection for Federated Learning With Label Noise
    Yang, Miao
    Qian, Hua
    Wang, Ximin
    Zhou, Yong
    Zhu, Honghin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2193 - 2197
  • [27] Jointly Optimizing Client Selection and Resource Management in Wireless Federated Learning for Internet of Things
    Yu, Liangkun
    Albelaihi, Rana
    Sun, Xiang
    Ansari, Nirwan
    Devetsikiotis, Michael
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (06) : 4385 - 4395
  • [28] Client Selection Approach in Support of Clustered Federated Learning over Wireless Edge Networks
    Albaseer, Abdullatif
    Abdallah, Mohamed
    Al-Fuqaha, Ala
    Erbad, Aiman
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [29] Energy-efficient client selection in federated learning with heterogeneous data on edge
    Jianxin Zhao
    Yanhao Feng
    Xinyu Chang
    Chi Harold Liu
    Peer-to-Peer Networking and Applications, 2022, 15 : 1139 - 1151
  • [30] Dubhe: Towards Data Unbiasedness with Homomorphic Encryption in Federated Learning Client Selection
    Zhang, Shulai
    Li, Zirui
    Chen, Quan
    Zheng, Wenli
    Leng, Jingwen
    Guo, Minyi
    50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2021,