Client Selection for Wireless Federated Learning With Data and Latency Heterogeneity

被引:0
|
作者
Chen, Xiaobing [1 ]
Zhou, Xiangwei [1 ]
Zhang, Hongchao [2 ]
Sun, Mingxuan [3 ]
Vincent Poor, H. [4 ]
机构
[1] Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Div Comp Sci & Engn, Baton Rouge, LA 70803 USA
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 70803 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 19期
基金
美国国家科学基金会;
关键词
Training; Federated learning; Computational modeling; Data models; Convergence; Servers; Probabilistic logic; Client selection; data heterogeneity; federated learning; latency heterogeneity; optimization;
D O I
10.1109/JIOT.2024.3425757
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a distributed machine learning paradigm that allows multiple edge devices to collaboratively train a shared model without exchanging raw data. However, the training efficiency of federated learning is highly dependent on client selection. Moreover, due to the varying wireless communication environments and various computation latencies among the clients, selecting clients randomly or uniformly may not be optimal for balancing the data diversity and training efficiency. In this article, we formulate a new latency-minimization problem that simultaneously optimizes client selection and training procedures in federated learning, which takes into account the data and latency heterogeneity among the clients. Given the nonconvexity of the problem, we derive a new convergence upper bound for federated learning with probabilistic client selection. To solve the mixed integer nonlinear programming problem, we introduce a hybrid solution that integrates grid search techniques with the polyhedral active set algorithm. Numerical analyses and experiments on real-world data demonstrate that our scheme outperforms the existing ones in terms of overall training latency and achieves up to three times acceleration over random client selection, especially in scenarios with highly heterogeneous data and latencies among the clients.
引用
收藏
页码:32183 / 32196
页数:14
相关论文
共 50 条
  • [11] Age of Information Based Client Selection for Wireless Federated Learning With Diversified Learning Capabilities
    Dong, Liran
    Zhou, Yiqing
    Liu, Ling
    Qi, Yanli
    Zhang, Yu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 14934 - 14945
  • [12] Joint Client Selection and Bandwidth Allocation of Wireless Federated Learning by Deep Reinforcement Learning
    Mao, Wei
    Lu, Xingjian
    Jiang, Yuhui
    Zheng, Haikun
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (01) : 336 - 348
  • [13] Client Selection in Hierarchical Federated Learning
    Trindade, Silvana
    da Fonseca, Nelson L. S.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28480 - 28495
  • [14] Client Selection for Federated Bayesian Learning
    Yang, Jiarong
    Liu, Yuan
    Kassab, Rahif
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 915 - 928
  • [15] FedSCS: Client Selection for Federated Learning Under System Heterogeneity and Client Fairness with a Stackelberg Game Approach
    Yin, Tong
    Li, Lixin
    Lin, Wensheng
    Liang, Wei
    Li, Xu
    Han, Zhu
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 373 - 378
  • [16] Client Selection Based on Channel Capacity for Federated Learning Under Wireless Channels
    Yamazaki, Satoshi
    Furuki, Takuma
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 225 - 230
  • [17] Data Quality-Aware Client Selection in Heterogeneous Federated Learning
    Song, Shinan
    Li, Yaxin
    Wan, Jin
    Fu, Xianghua
    Jiang, Jingyan
    MATHEMATICS, 2024, 12 (20)
  • [18] Can hierarchical client clustering mitigate the data heterogeneity effect in federated learning?
    Lee, Seungjun
    Yu, Miri
    Yoon, Daegun
    Oh, Sangyoon
    2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW, 2023, : 799 - 808
  • [19] FedCME: Client Matching and Classifier Exchanging to Handle Data Heterogeneity in Federated Learning
    Nie, Jun
    Xiao, Danyang
    Yang, Lei
    Wu, Weigang
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 544 - 552
  • [20] Client Selection with Bandwidth Allocation in Federated Learning
    Kuang, Junqian
    Yang, Miao
    Zhu, Hongbin
    Qian, Hua
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,