Thermal conductivity in solid solutions of lithium niobate tantalate single crystals from 300 K up to 1300 K

被引:0
|
作者
Bashir, Umar [1 ]
Ruesing, Michael [2 ,3 ]
Klimm, Detlef [1 ]
Blukis, Roberts [1 ]
Koppitz, Boris [2 ]
Eng, Lukas M. [2 ]
Bickermann, Matthias [1 ]
Ganschow, Steffen [1 ]
机构
[1] Leibniz Inst Kristallzuchtung IKZ, Max Born Str 2, D-12489 Berlin, Germany
[2] Tech Univ Dresden, Inst Appl Phys, Nothnitzer Str 61, D-01187 Dresden, Germany
[3] Paderborn Univ, Inst Photon Quantum Syst PhoQS, Integrated Quantum Opt, Warburger Str 100, D-33098 Paderborn, Germany
关键词
Solid-solutions; Single crystals; Lithium niobate tantalate; Thermal conductivity; Ion transport; INTEGRATED PHOTONICS; LINBO3; GROWTH; DIFFUSIVITY; TEMPERATURE;
D O I
10.1016/j.jallcom.2024.176549
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium niobate tantalate (LiNb(1_ x)TaxO(3), LNT) solid solutions offer exciting new possibilities for applications ranging from optics, piezotronics, and electronics beyond the capabilities of the widely used singular compounds of lithium niobate (LiNbO3, LN) or lithium tantalate (LiTaO3, LT). Crystal growth of homogeneous LNT single crystals by the Czochralski method is still challenging. One key aspect of homogeneous growth is the accurate knowledge of thermal conductivity through the crystal boule during the growth, which is central to control the crystal growth. Therefore, the temperature dependent thermal conductivity of pure LN, LT, and LNT solid solutions, as well as of selected doped LN and LT crystals (Mg, Zn) was investigated across the temperature range from 300 to 1300 K. The results that span across the whole composition range can directly be applied for optimizing growth conditions of both LNT solid solutions as well as doped and undoped LN and LT crystals.
引用
收藏
页数:9
相关论文
共 50 条