Thermal conductivity in solid solutions of lithium niobate tantalate single crystals from 300 K up to 1300 K

被引:0
|
作者
Bashir, Umar [1 ]
Ruesing, Michael [2 ,3 ]
Klimm, Detlef [1 ]
Blukis, Roberts [1 ]
Koppitz, Boris [2 ]
Eng, Lukas M. [2 ]
Bickermann, Matthias [1 ]
Ganschow, Steffen [1 ]
机构
[1] Leibniz Inst Kristallzuchtung IKZ, Max Born Str 2, D-12489 Berlin, Germany
[2] Tech Univ Dresden, Inst Appl Phys, Nothnitzer Str 61, D-01187 Dresden, Germany
[3] Paderborn Univ, Inst Photon Quantum Syst PhoQS, Integrated Quantum Opt, Warburger Str 100, D-33098 Paderborn, Germany
关键词
Solid-solutions; Single crystals; Lithium niobate tantalate; Thermal conductivity; Ion transport; INTEGRATED PHOTONICS; LINBO3; GROWTH; DIFFUSIVITY; TEMPERATURE;
D O I
10.1016/j.jallcom.2024.176549
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium niobate tantalate (LiNb(1_ x)TaxO(3), LNT) solid solutions offer exciting new possibilities for applications ranging from optics, piezotronics, and electronics beyond the capabilities of the widely used singular compounds of lithium niobate (LiNbO3, LN) or lithium tantalate (LiTaO3, LT). Crystal growth of homogeneous LNT single crystals by the Czochralski method is still challenging. One key aspect of homogeneous growth is the accurate knowledge of thermal conductivity through the crystal boule during the growth, which is central to control the crystal growth. Therefore, the temperature dependent thermal conductivity of pure LN, LT, and LNT solid solutions, as well as of selected doped LN and LT crystals (Mg, Zn) was investigated across the temperature range from 300 to 1300 K. The results that span across the whole composition range can directly be applied for optimizing growth conditions of both LNT solid solutions as well as doped and undoped LN and LT crystals.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Dielectric loss of oxide single crystals and polycrystalline analogues from 10 K to 300 K
    Alford, NM
    Breeze, J
    Aupi, X
    HIGH-PERFORMANCE CERAMICS 2001, PROCEEDINGS, 2002, 224-2 : 17 - 22
  • [32] ELECTRICAL PROPERTIES OF SINGLE CRYSTALS OF SOLID SOLUTIONS OF TELLURIUM IN BISMUTH IN THE TEMPERATURE RANGE 77-300-DEGREES-K
    IVANOV, GA
    SOVIET PHYSICS-SOLID STATE, 1964, 5 (11): : 2322 - 2325
  • [33] THERMAL CONDUCTIVITY OF NAF SINGLE CRYSTALS CONTAINING K, LI, AND CL IMPURITIES
    SMIRNOV, IA
    SOVIET PHYSICS SOLID STATE,USSR, 1967, 9 (06): : 1454 - +
  • [34] THERMAL-CONDUCTIVITY OF SEVERAL EXFOLIATED GRAPHITES FROM 2-K TO 300-K
    UHER, C
    CRYOGENICS, 1980, 20 (08) : 445 - 447
  • [35] Thermal conductivity of FeS2 pyrite crystals in the temperature range 50–300 K
    P. A. Popov
    P. P. Fedorov
    S. V. Kuznetsov
    Crystallography Reports, 2013, 58 : 319 - 321
  • [36] THERMAL DIFFUSIVITY AND THERMAL-CONDUCTIVITY OF PYROLYTIC-GRAPHITE FROM 300 DEGREES K TO 2700 DEGREES K
    NULL, MR
    LOZIER, WW
    MOORE, AW
    CARBON, 1973, 11 (02) : 81 - 87
  • [37] Measurements of the thermal conductivity of chlorodifluoromethane (HCFC-22) in the temperature range from 300 K to 515 K and at pressures up to 55 MPa
    Le Neindre, B
    Garrabos, Y
    Sabirzianov, A
    Goumerov, F
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2001, 46 (02): : 193 - 201
  • [38] THERMAL CONDUCTIVITY (80-300 degree K) OF PSEUDOBINARY SOLID SOLUTIONS BASED ON N-TYPE PbTe.
    Alekseeva, G.T.
    Efimova, B.A.
    Logachev, Yu.A.
    Soviet Physics, Semiconductors (English translation of Fizika i Tekhnika Poluprovodnikov), 1975, 9 (01): : 83 - 84
  • [39] Thermal conductivity of BaPuO3 at temperatures from 300 to 1500 K
    Tanaka, Kosuke
    Sato, Isamu
    Hirosawa, Takashi
    Kurosaki, Ken
    Muta, Hiroaki
    Yamanaka, Shinsuke
    JOURNAL OF NUCLEAR MATERIALS, 2011, 414 (02) : 316 - 319
  • [40] Thermal Conductivity of Single-Crystal ZrO2-Based Solid Solutions Stabilized with Scandium and Yttrium Oxides in the Temperature Range 50–300 K
    M. A. Borik
    A. V. Kulebyakin
    E. E. Lomonova
    V. A. Myzina
    P. A. Popov
    F. O. Milovich
    N. Yu. Tabachkova
    Physics of the Solid State, 2018, 60 : 2672 - 2677