Thermal conductivity in solid solutions of lithium niobate tantalate single crystals from 300 K up to 1300 K

被引:0
|
作者
Bashir, Umar [1 ]
Ruesing, Michael [2 ,3 ]
Klimm, Detlef [1 ]
Blukis, Roberts [1 ]
Koppitz, Boris [2 ]
Eng, Lukas M. [2 ]
Bickermann, Matthias [1 ]
Ganschow, Steffen [1 ]
机构
[1] Leibniz Inst Kristallzuchtung IKZ, Max Born Str 2, D-12489 Berlin, Germany
[2] Tech Univ Dresden, Inst Appl Phys, Nothnitzer Str 61, D-01187 Dresden, Germany
[3] Paderborn Univ, Inst Photon Quantum Syst PhoQS, Integrated Quantum Opt, Warburger Str 100, D-33098 Paderborn, Germany
关键词
Solid-solutions; Single crystals; Lithium niobate tantalate; Thermal conductivity; Ion transport; INTEGRATED PHOTONICS; LINBO3; GROWTH; DIFFUSIVITY; TEMPERATURE;
D O I
10.1016/j.jallcom.2024.176549
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium niobate tantalate (LiNb(1_ x)TaxO(3), LNT) solid solutions offer exciting new possibilities for applications ranging from optics, piezotronics, and electronics beyond the capabilities of the widely used singular compounds of lithium niobate (LiNbO3, LN) or lithium tantalate (LiTaO3, LT). Crystal growth of homogeneous LNT single crystals by the Czochralski method is still challenging. One key aspect of homogeneous growth is the accurate knowledge of thermal conductivity through the crystal boule during the growth, which is central to control the crystal growth. Therefore, the temperature dependent thermal conductivity of pure LN, LT, and LNT solid solutions, as well as of selected doped LN and LT crystals (Mg, Zn) was investigated across the temperature range from 300 to 1300 K. The results that span across the whole composition range can directly be applied for optimizing growth conditions of both LNT solid solutions as well as doped and undoped LN and LT crystals.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] THERMAL EXPANSION OF LITHIUM TANTALATE AND LITHIUM NIOBATE SINGLE CRYSTALS
    KIM, YS
    SMITH, RT
    JOURNAL OF APPLIED PHYSICS, 1969, 40 (11) : 4637 - &
  • [2] The electronic conductivity in single crystals of lithium niobate and lithium tantalate family
    Esin, A. A.
    Akhmatkhanov, A. R.
    Shur, V. Ya.
    FERROELECTRICS, 2016, 496 (01) : 102 - 109
  • [3] Anomalous electron emission from lithium niobate and lithium tantalate single crystals
    Kozakov, AT
    Kolesnikov, VV
    Nikolskii, AV
    Sakhnenko, VP
    PHYSICS OF THE SOLID STATE, 1997, 39 (04) : 594 - 597
  • [4] Anomalous electron emission from lithium niobate and lithium tantalate single crystals
    A. T. Kozakov
    V. V. Kolesnikov
    A. V. Nikol’skii
    V. P. Sakhnenko
    Physics of the Solid State, 1997, 39 : 594 - 597
  • [5] THERMAL-CONDUCTIVITY OF ARSENIC SINGLE-CRYSTALS FROM 2-K TO 300-K
    MORELLI, DT
    UHER, C
    PHYSICAL REVIEW B, 1983, 28 (08): : 4242 - 4246
  • [6] Thermal conductivity of silicon, germanium and silicon-germanium single crystals between 85 K and 300 K
    Freund, AK
    Gillet, JA
    Zhang, L
    CRYSTAL AND MULTILAYER OPTICS, 1998, 3448 : 362 - 372
  • [7] Oxygen partial pressure and temperature dependent electrical conductivity of lithium-niobate-tantalate solid solutions
    Yakhnevych, U.
    El Azzouzi, F.
    Bernhardt, F.
    Kofahl, C.
    Suhak, Y.
    Sanna, S.
    Becker, K. -D.
    Schmidt, H.
    Ganschow, S.
    Fritze, H.
    SOLID STATE IONICS, 2024, 407
  • [8] Microhardness of Crystals of Lithium Niobate Tantalate LiNb1–xTaxO3 Solid Solutions
    E. V. Zabelina
    N. S. Kozlova
    A. A. Mololkin
    V. M. Kasimova
    R. R. Fakhrtdinov
    A. V. Sosunov
    I. S. Didenko
    Russian Microelectronics, 2024, 53 (8) : 782 - 790
  • [9] Charge transport and acoustic loss in lithium niobate-lithium tantalate solid solutions at temperatures up to 900 °C
    Yakhnevych, U.
    Kofahl, C.
    Hurskyy, S.
    Ganschow, S.
    Suhak, Y.
    Schmidt, H.
    Fritze, H.
    SOLID STATE IONICS, 2023, 392
  • [10] Thermal conductivity of GaN crystals in 4.2-300 K range
    Jezowski, A
    Danilchenko, BA
    Bockowski, M
    Grzegory, I
    Krukowski, S
    Suski, T
    Paszkiewicz, T
    SOLID STATE COMMUNICATIONS, 2003, 128 (2-3) : 69 - 73