Fitness-guided particle swarm optimization with adaptive Newton-Raphson for photovoltaic model parameter estimation

被引:1
|
作者
Premkumar, Manoharan [1 ,2 ]
Ravichandran, Sowmya [3 ]
Hashim, Tengku Juhana Tengku [1 ]
Sin, Tan Ching [1 ]
Abbassi, Rabeh [4 ,5 ,6 ]
机构
[1] Univ Tenaga Nas, Inst Power Engn IPE, Coll Engn, Dept Elect & Elect Engn, Kajang 43000, Selangor, Malaysia
[2] Dayananda Sagar Coll Engn, Dept Elect & Elect Engn, Bengaluru 560078, Karnataka, India
[3] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect & Elect Engn, Manipal 576104, Karnataka, India
[4] Univ Hail, Coll Engn, Dept Elect Engn, Hail 81451, Saudi Arabia
[5] Univ Tunis, Higher Natl Engn Sch Tunis ENSIT, LaTICE Lab, 5 Ave Taha Hussein,POB 56, Tunis 1008, Tunisia
[6] Univ Kairouan, Inst Appl Sci & Technol Kasserine ISSATKas, POB 471, Kasserine 1200, Tunisia
关键词
Energy; Newton-Raphson method; Parameter estimation; Particle swarm optimizer; Photovoltaics; Sustainability; MARINE PREDATORS ALGORITHM; ARTIFICIAL BEE COLONY; SINGLE-DIODE MODEL; LAMBERT W-FUNCTION; EXTRACTION; IDENTIFICATION; CELLS; SEARCH;
D O I
10.1016/j.asoc.2024.112295
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces a new approach for parameter optimization in the four-diode photovoltaic (PV) model, employing a Dynamic Fitness-Guided Particle Swarm Optimization (DFGPSO) algorithm and Enhanced NewtonRaphson (ENR) method. The new DFGPSO algorithm is specifically designed to address the intrinsic challenges in PV modelling, such as local optima entrapment and slow convergence rates that typically hinder traditional optimization methods. By integrating a dynamically evolving fitness function derived from advanced swarm intelligence, the proposed approach significantly enhances global search capabilities. This new fitness function adapts continuously to the search landscape, facilitating rapid convergence towards optimal solutions and effectively navigating the complex, non-linear, and multi-modal parameter space of the PV model. Moreover, the robustness of the DFGPSO algorithm is substantially improved through the strategic incorporation of the ENR method. This integration not only provides accurate initial guesses for the particle positions, thus expediting the convergence process, but also minimizes computational burden, making the method more efficient. Comprehensive simulation studies across various case scenarios demonstrate that the proposed method markedly outperforms existing state-of-the-art optimization algorithms. It delivers faster convergence, enhanced accuracy, and robust performance under diverse environmental conditions, establishing a reliable and precise tool for optimizing PV system performance. This advancement promises significant improvements in energy yield and system reliability for the PV industry.
引用
收藏
页数:41
相关论文
共 50 条
  • [41] Exact filters for Newton-Raphson parameter estimation algorithms for continuous-time partially observed stochastic systems
    Charalambous, CD
    Hibey, JL
    SYSTEMS & CONTROL LETTERS, 2001, 42 (02) : 101 - 115
  • [42] Particle Swarm Optimization for Photovoltaic Model Identification
    Nunes, Hugo
    Pombo, Jose
    Fermeiro, Joao
    Mariano, Silvio
    Calado, Maria do Rosario
    2017 INTERNATIONAL YOUNG ENGINEERS FORUM (YEF-ECE), 2017, : 53 - 58
  • [43] Development software program for extraction of photovoltaic cell equivalent circuit model parameters based on the Newton-Raphson method
    Adak, Suleyman
    Cangi, Hasan
    Yilmaz, Ahmet Serdar
    Arifoglu, Ugur
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2023, 22 (01) : 413 - 422
  • [44] An adaptive parameter tuning of particle swarm optimization algorithm
    Xu, Gang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4560 - 4569
  • [45] Adaptive particle swarm optimization guided by acceleration information
    Zeng, Jianchao
    Jie, Jing
    Hu, Jianxiu
    2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 351 - 355
  • [46] Multiobjective particle swarm optimization for parameter estimation in hydrology
    Gill, M. Kashif
    Kaheil, Yasir H.
    Khalil, Abedalrazq
    McKee, Mac
    Bastidas, Luis
    WATER RESOURCES RESEARCH, 2006, 42 (07)
  • [47] Particle Swarm Optimization for Chaotic System Parameter Estimation
    Samanta, B.
    Nataraj, C.
    2009 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2009, : 74 - 80
  • [48] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [49] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [50] PARAMETER ESTIMATION OF SCHOTTKY-BARRIER DIODE MODEL BY PARTICLE SWARM OPTIMIZATION
    Wang, Kaier
    Ye, Meiying
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (05): : 687 - 699