Fitness-guided particle swarm optimization with adaptive Newton-Raphson for photovoltaic model parameter estimation

被引:1
|
作者
Premkumar, Manoharan [1 ,2 ]
Ravichandran, Sowmya [3 ]
Hashim, Tengku Juhana Tengku [1 ]
Sin, Tan Ching [1 ]
Abbassi, Rabeh [4 ,5 ,6 ]
机构
[1] Univ Tenaga Nas, Inst Power Engn IPE, Coll Engn, Dept Elect & Elect Engn, Kajang 43000, Selangor, Malaysia
[2] Dayananda Sagar Coll Engn, Dept Elect & Elect Engn, Bengaluru 560078, Karnataka, India
[3] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect & Elect Engn, Manipal 576104, Karnataka, India
[4] Univ Hail, Coll Engn, Dept Elect Engn, Hail 81451, Saudi Arabia
[5] Univ Tunis, Higher Natl Engn Sch Tunis ENSIT, LaTICE Lab, 5 Ave Taha Hussein,POB 56, Tunis 1008, Tunisia
[6] Univ Kairouan, Inst Appl Sci & Technol Kasserine ISSATKas, POB 471, Kasserine 1200, Tunisia
关键词
Energy; Newton-Raphson method; Parameter estimation; Particle swarm optimizer; Photovoltaics; Sustainability; MARINE PREDATORS ALGORITHM; ARTIFICIAL BEE COLONY; SINGLE-DIODE MODEL; LAMBERT W-FUNCTION; EXTRACTION; IDENTIFICATION; CELLS; SEARCH;
D O I
10.1016/j.asoc.2024.112295
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces a new approach for parameter optimization in the four-diode photovoltaic (PV) model, employing a Dynamic Fitness-Guided Particle Swarm Optimization (DFGPSO) algorithm and Enhanced NewtonRaphson (ENR) method. The new DFGPSO algorithm is specifically designed to address the intrinsic challenges in PV modelling, such as local optima entrapment and slow convergence rates that typically hinder traditional optimization methods. By integrating a dynamically evolving fitness function derived from advanced swarm intelligence, the proposed approach significantly enhances global search capabilities. This new fitness function adapts continuously to the search landscape, facilitating rapid convergence towards optimal solutions and effectively navigating the complex, non-linear, and multi-modal parameter space of the PV model. Moreover, the robustness of the DFGPSO algorithm is substantially improved through the strategic incorporation of the ENR method. This integration not only provides accurate initial guesses for the particle positions, thus expediting the convergence process, but also minimizes computational burden, making the method more efficient. Comprehensive simulation studies across various case scenarios demonstrate that the proposed method markedly outperforms existing state-of-the-art optimization algorithms. It delivers faster convergence, enhanced accuracy, and robust performance under diverse environmental conditions, establishing a reliable and precise tool for optimizing PV system performance. This advancement promises significant improvements in energy yield and system reliability for the PV industry.
引用
收藏
页数:41
相关论文
共 50 条
  • [31] Highly efficient photovoltaic parameter estimation using parallel particle swarm optimization on a GPU
    Gao, Shuhua
    Xiang, Cheng
    Lee, Tong Heng
    PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [32] Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing
    Mughal, Muhammad Ali
    Ma, Qishuang
    Xiao, Chunyan
    ENERGIES, 2017, 10 (08)
  • [33] Employing Adaptive Particle Swarm Optimization Algorithm for Parameter Estimation of an Exciter Machine
    Darabi, Ahmad
    Alfi, Alireza
    Kiumarsi, Bahare
    Modares, Hamidreza
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2012, 134 (01):
  • [34] Parameter Identification of Photovoltaic Cell Model Based on Enhanced Particle Swarm Optimization
    Wang, Rongjie
    SUSTAINABILITY, 2021, 13 (02) : 1 - 25
  • [35] Parameter estimation of three-diode solar photovoltaic model using an Improved-African Vultures optimization algorithm with Newton–Raphson method
    C. Kumar
    D. Magdalin Mary
    Journal of Computational Electronics, 2021, 20 : 2563 - 2593
  • [36] A Particle Swarm Optimization for Parameter Estimation of a Rainfall-Runoff Model
    Bardolle, Frederic
    Delay, Frederick
    Bichot, Francis
    Porel, Gilles
    Doerfliger, Nathalie
    MATHEMATICS OF PLANET EARTH, 2014, : 153 - 156
  • [37] Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model
    Chu, Hone-Jay
    Chang, Liang-Cheng
    JOURNAL OF HYDROLOGIC ENGINEERING, 2009, 14 (09) : 1024 - 1027
  • [38] A New Fitness Based Adaptive Parameter Particle Swarm Optimizer
    Akhtar, Sohail
    Abdel-Rahman, Eihab
    Ahmad, Abdul-Rahim
    2014 CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION (CRV), 2014, : 336 - 343
  • [39] A new fitness estimation strategy for particle swarm optimization
    Sun, Chaoli
    Zeng, Jianchao
    Pan, Jengshyang
    Xue, Songdong
    Jin, Yaochu
    INFORMATION SCIENCES, 2013, 221 : 355 - 370
  • [40] Parameter estimation of solar PV models with quantum-based avian navigation optimizer and Newton-Raphson method
    Ayyarao, Tummala S. L., V
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2022, 21 (06) : 1338 - 1356