Contrastive signal-dependent plasticity: Self-supervised learning in spiking neural circuits

被引:2
|
作者
Ororbia, Alexander G. [1 ]
机构
[1] Rochester Inst Technol, Dept Comp Sci, 1 Lomb Mem Dr, Rochester, NY 14623 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 43期
关键词
NETWORKS; NEURONS; INTELLIGENCE; STDP;
D O I
10.1126/sciadv.adn6076
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Brain-inspired machine intelligence research seeks to develop computational models that emulate the information processing and adaptability that distinguishes biological systems of neurons. This has led to the development of spiking neural networks, a class of models that promisingly addresses the biological implausibility and the lack of energy efficiency inherent to modern-day deep neural networks. In this work, we address the challenge of designing neurobiologically motivated schemes for adjusting the synapses of spiking networks and propose contrastive signal-dependent plasticity, a process which generalizes ideas behind self-supervised learning to facilitate local adaptation in architectures of event-based neuronal layers that operate in parallel. Our experimental simulations demonstrate a consistent advantage over other biologically plausible approaches when training recurrent spiking networks, crucially side-stepping the need for extra structure such as feedback synapses.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] CONTRASTIVE HEARTBEATS: CONTRASTIVE LEARNING FOR SELF-SUPERVISED ECG REPRESENTATION AND PHENOTYPING
    Wei, Crystal T.
    Hsieh, Ming-En
    Liu, Chien-Liang
    Tseng, Vincent S.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1126 - 1130
  • [22] Self-Supervised Contrastive Learning for Volcanic Unrest Detection
    Bountos, Nikolaos Ioannis
    Papoutsis, Ioannis
    Michail, Dimitrios
    Anantrasirichai, Nantheera
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [23] DimCL: Dimensional Contrastive Learning for Improving Self-Supervised Learning
    Nguyen, Thanh
    Pham, Trung Xuan
    Zhang, Chaoning
    Luu, Tung M.
    Vu, Thang
    Yoo, Chang D.
    IEEE ACCESS, 2023, 11 : 21534 - 21545
  • [24] Self-supervised Contrastive Learning for Predicting Game Strategies
    Lee, Young Jae
    Baek, Insung
    Jo, Uk
    Kim, Jaehoon
    Bae, Jinsoo
    Jeong, Keewon
    Kim, Seoung Bum
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2023, 542 : 136 - 147
  • [25] Contrasting Contrastive Self-Supervised Representation Learning Pipelines
    Kotar, Klemen
    Ilharco, Gabriel
    Schmidt, Ludwig
    Ehsani, Kiana
    Mottaghi, Roozbeh
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9929 - 9939
  • [26] CONTRASTIVE SELF-SUPERVISED LEARNING FOR WIRELESS POWER CONTROL
    Naderializadeh, Navid
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4965 - 4969
  • [27] Contrastive Self-Supervised Learning for Skeleton Action Recognition
    Gao, Xuehao
    Yang, Yang
    Du, Shaoyi
    NEURIPS 2020 WORKSHOP ON PRE-REGISTRATION IN MACHINE LEARNING, VOL 148, 2020, 148 : 51 - 61
  • [28] Malicious Traffic Identification with Self-Supervised Contrastive Learning
    Yang, Jin
    Jiang, Xinyun
    Liang, Gang
    Li, Siyu
    Ma, Zicheng
    SENSORS, 2023, 23 (16)
  • [29] Self-Supervised Learning on Graphs: Contrastive, Generative, or Predictive
    Wu, Lirong
    Lin, Haitao
    Tan, Cheng
    Gao, Zhangyang
    Li, Stan Z.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 4216 - 4235
  • [30] Contrastive Self-Supervised Learning: A Survey on Different Architectures
    Khan, Adnan
    AlBarri, Sarah
    Manzoor, Muhammad Arslan
    PROCEEDINGS OF 2ND IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (ICAI 2022), 2022, : 1 - 6