Contrastive signal-dependent plasticity: Self-supervised learning in spiking neural circuits

被引:2
|
作者
Ororbia, Alexander G. [1 ]
机构
[1] Rochester Inst Technol, Dept Comp Sci, 1 Lomb Mem Dr, Rochester, NY 14623 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 43期
关键词
NETWORKS; NEURONS; INTELLIGENCE; STDP;
D O I
10.1126/sciadv.adn6076
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Brain-inspired machine intelligence research seeks to develop computational models that emulate the information processing and adaptability that distinguishes biological systems of neurons. This has led to the development of spiking neural networks, a class of models that promisingly addresses the biological implausibility and the lack of energy efficiency inherent to modern-day deep neural networks. In this work, we address the challenge of designing neurobiologically motivated schemes for adjusting the synapses of spiking networks and propose contrastive signal-dependent plasticity, a process which generalizes ideas behind self-supervised learning to facilitate local adaptation in architectures of event-based neuronal layers that operate in parallel. Our experimental simulations demonstrate a consistent advantage over other biologically plausible approaches when training recurrent spiking networks, crucially side-stepping the need for extra structure such as feedback synapses.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] A comprehensive perspective of contrastive self-supervised learning
    Chen, Songcan
    Geng, Chuanxing
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (04)
  • [12] A comprehensive perspective of contrastive self-supervised learning
    Songcan Chen
    Chuanxing Geng
    Frontiers of Computer Science, 2021, 15
  • [13] Slimmable Networks for Contrastive Self-supervised Learning
    Zhao, Shuai
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1222 - 1237
  • [14] Self-supervised contrastive learning for itinerary recommendation
    Chen, Lei
    Zhu, Guixiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [15] Similarity Contrastive Estimation for Self-Supervised Soft Contrastive Learning
    Denize, Julien
    Rabarisoa, Jaonary
    Orcesi, Astrid
    Herault, Romain
    Canu, Stephane
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2705 - 2715
  • [16] Pathological Image Contrastive Self-supervised Learning
    Qin, Wenkang
    Jiang, Shan
    Luo, Lin
    RESOURCE-EFFICIENT MEDICAL IMAGE ANALYSIS, REMIA 2022, 2022, 13543 : 85 - 94
  • [17] Contrastive Transformation for Self-supervised Correspondence Learning
    Wang, Ning
    Zhou, Wengang
    Li, Hougiang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10174 - 10182
  • [18] Self-Supervised Contrastive Learning for Singing Voices
    Yakura, Hiromu
    Watanabe, Kento
    Goto, Masataka
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 1614 - 1623
  • [19] JGCL: Joint Self-Supervised and Supervised Graph Contrastive Learning
    Akkas, Selahattin
    Azad, Ariful
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 1099 - 1105
  • [20] Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning
    Wang, Xiao
    Liu, Nian
    Han, Hui
    Shi, Chuan
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1726 - 1736