Atomic clock locking with Bayesian quantum parameter estimation: Scheme and experiment

被引:0
|
作者
Han, Chengyin [1 ]
Ma, Zhu [1 ,2 ]
Qiu, Yuxiang [2 ,3 ]
Fang, Ruihuan [1 ,2 ]
Wu, Jiatao [1 ,2 ]
Zhan, Chang [1 ,2 ]
Li, Maojie [1 ,2 ]
Huang, Jiahao [1 ,2 ]
Lu, Bo [1 ]
Lee, Chaohong [1 ,4 ]
机构
[1] Shenzhen Univ, Inst Quantum Precis Measurement, Coll Phys & Optoelect Engn, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys & Astron, Lab Quantum Engn & Quantum Metrol, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Hubei Normal Univ, Coll Phys & Elect Sci, Huangshi 435002, Peoples R China
[4] Quantum Sci Ctr Guangdong Hong Kong Macao Greater, Shenzhen 518045, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 04期
关键词
ENTANGLEMENT; STABILITY; CONTRAST; TIMES;
D O I
10.1103/PhysRevApplied.22.044058
中图分类号
O59 [应用物理学];
学科分类号
摘要
Atomic clocks are crucial for science and technology, but their sensitivity is often restricted by the standard quantum limit. To surpass this limit, correlations between particles or interrogation times must be leveraged. Although the sensitivity can be enhanced to the Heisenberg limit using quantum entanglement, it remains unclear whether the scaling of sensitivity with total interrogation time can achieve the Heisenberg scaling. Here, we design an adaptive Bayesian quantum frequency estimation protocol that approaches the Heisenberg scaling and experimentally demonstrate its validity with a cold-atom coherent-population-trapping (CPT) clock. Further, we achieve high-precision closed-loop locking of the cold-atom CPT clock by utilizing our Bayesian quantum frequency estimation protocol. In comparison to the conventional proportional-integral-differential locking, our Bayesian locking scheme not only yields an improvement of 5.1(4) dB in fractional frequency stability, but also exhibits better robustness against technical noises. Our findings not only provide a high-precision approach to lock atomic clocks, but also hold promising applications in various interferometry-based quantum sensors, such as quantum magnetometers and atomic interferometers.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Parameter estimation in quantum optics
    D'Ariano, GM
    Paris, MGA
    Sacchi, MF
    PHYSICAL REVIEW A, 2000, 62 (02):
  • [42] Incompatibility in quantum parameter estimation
    Belliardo, Federico
    Giovannetti, Vittorio
    NEW JOURNAL OF PHYSICS, 2021, 23 (06):
  • [43] Parameter Estimation of Quantum Channels
    Ji, Zhengfeng
    Wang, Guoming
    Duan, Runyao
    Feng, Yuan
    Ying, Mingsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) : 5172 - 5185
  • [44] A Novel Parameter Estimation Scheme for Supercapacitors
    Brydon, Keelan
    Laha, Arpan
    Kalathy, Abirami
    Pahlevani, Majid
    ELECTRONICS, 2024, 13 (23):
  • [45] Coherent population trapping atomic clock by phase modulation for wide locking range
    Yano, Yuichiro
    Kajita, Masatoshi
    Ido, Tetsuya
    Hara, Motoaki
    APPLIED PHYSICS LETTERS, 2017, 111 (20)
  • [46] μPOP Clock: A Microcell Atomic Clock Based on a Double-Resonance Ramsey Scheme
    Batori, Etienne
    Affolderbach, Christoph
    Pellaton, Matthieu
    Gruet, Florian
    Violetti, Maddalena
    Su, Yuanyan
    Skrivervik, Anja K.
    Mileti, Gaetano
    PHYSICAL REVIEW APPLIED, 2022, 18 (05)
  • [47] An Integrated Frequent RTO and Adaptive Nonlinear MPC Scheme Based on Simultaneous Bayesian State and Parameter Estimation
    Valluru, Jayaram
    Patwardhan, Sachin C.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (18) : 7561 - 7578
  • [48] GLOBAL TWIN ATOMIC CLOCK EXPERIMENT OF OCTOBER-1971
    KEATING, RE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (04): : 644 - 644
  • [49] Bayesian estimation of the von Mises concentration parameter
    Dowe, DL
    Oliver, JJ
    Baxter, RA
    Wallace, CS
    MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 51 - 59
  • [50] Bayesian parameter estimation via variational methods
    Jaakkola, TS
    Jordan, MI
    STATISTICS AND COMPUTING, 2000, 10 (01) : 25 - 37