Atomic clock locking with Bayesian quantum parameter estimation: Scheme and experiment

被引:0
|
作者
Han, Chengyin [1 ]
Ma, Zhu [1 ,2 ]
Qiu, Yuxiang [2 ,3 ]
Fang, Ruihuan [1 ,2 ]
Wu, Jiatao [1 ,2 ]
Zhan, Chang [1 ,2 ]
Li, Maojie [1 ,2 ]
Huang, Jiahao [1 ,2 ]
Lu, Bo [1 ]
Lee, Chaohong [1 ,4 ]
机构
[1] Shenzhen Univ, Inst Quantum Precis Measurement, Coll Phys & Optoelect Engn, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys & Astron, Lab Quantum Engn & Quantum Metrol, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Hubei Normal Univ, Coll Phys & Elect Sci, Huangshi 435002, Peoples R China
[4] Quantum Sci Ctr Guangdong Hong Kong Macao Greater, Shenzhen 518045, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 04期
关键词
ENTANGLEMENT; STABILITY; CONTRAST; TIMES;
D O I
10.1103/PhysRevApplied.22.044058
中图分类号
O59 [应用物理学];
学科分类号
摘要
Atomic clocks are crucial for science and technology, but their sensitivity is often restricted by the standard quantum limit. To surpass this limit, correlations between particles or interrogation times must be leveraged. Although the sensitivity can be enhanced to the Heisenberg limit using quantum entanglement, it remains unclear whether the scaling of sensitivity with total interrogation time can achieve the Heisenberg scaling. Here, we design an adaptive Bayesian quantum frequency estimation protocol that approaches the Heisenberg scaling and experimentally demonstrate its validity with a cold-atom coherent-population-trapping (CPT) clock. Further, we achieve high-precision closed-loop locking of the cold-atom CPT clock by utilizing our Bayesian quantum frequency estimation protocol. In comparison to the conventional proportional-integral-differential locking, our Bayesian locking scheme not only yields an improvement of 5.1(4) dB in fractional frequency stability, but also exhibits better robustness against technical noises. Our findings not only provide a high-precision approach to lock atomic clocks, but also hold promising applications in various interferometry-based quantum sensors, such as quantum magnetometers and atomic interferometers.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] GPS satellite clock estimation using global atomic clock network
    Jian Yao
    Sungpil Yoon
    Bryan Stressler
    Steve Hilla
    Mark Schenewerk
    GPS Solutions, 2021, 25
  • [32] GPS satellite clock estimation using global atomic clock network
    Yao, Jian
    Yoon, Sungpil
    Stressler, Bryan
    Hilla, Steve
    Schenewerk, Mark
    GPS SOLUTIONS, 2021, 25 (03)
  • [33] Development of the quantum discriminator for compact atomic clock
    Sivak, A. V.
    Zibrov, S. A.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2011, 38 (05) : 131 - 136
  • [34] Development of the quantum discriminator for compact atomic clock
    A. V. Sivak
    S. A. Zibrov
    Bulletin of the Lebedev Physics Institute, 2011, 38 : 131 - 136
  • [35] Benchmarking Bayesian quantum estimation
    Cimini, Valeria
    Polino, Emanuele
    Valeri, Mauro
    Spagnolo, Nicolo
    Sciarrino, Fabio
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03):
  • [36] A method for parameter optimization of locking dowel base on the orthogonal experiment
    Chen, Shi-tong
    Zhang, Wen-xue
    Du, Xiu-li
    Zhang, Yao-hui
    ADVANCES IN ENERGY, ENVIRONMENT AND MATERIALS SCIENCE, 2016, : 543 - 547
  • [37] Bayesian relaxed clock estimation of divergence times in foraminifera
    Groussin, Mathieu
    Pawlowski, Jan
    Yang, Ziheng
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2011, 61 (01) : 157 - 166
  • [38] Application of if estimation to parameter atomic decomposition
    Department of Engineering Physics, Tsinghua University, Beijing 100084, China
    不详
    不详
    不详
    Chin J Electron, 2006, 2 (363-366):
  • [39] Application of IF estimation to parameter atomic decomposition
    Tang, HZ
    Fan, WC
    CHINESE JOURNAL OF ELECTRONICS, 2006, 15 (02): : 363 - 366
  • [40] Control-Enhanced Sequential Scheme for General Quantum Parameter Estimation at the Heisenberg Limit
    Hou, Zhibo
    Wang, Rui-Jia
    Tang, Jun-Feng
    Yuan, Haidong
    Xiang, Guo-Yong
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW LETTERS, 2019, 123 (04)