Antiferromagnetic Nanoscale Bit Arrays of Magnetoelectric Cr2O3 Thin Films

被引:0
|
作者
Rickhaus, Peter [1 ]
Pylypovskyi, Oleksandr V. [2 ,3 ]
Seniutinas, Gediminas [1 ]
Borras, Vicent [1 ]
Lehmann, Paul [4 ]
Wagner, Kai [4 ]
Zaper, Liza [1 ,4 ]
Prusik, Paulina J. [2 ]
Makushko, Pavlo [2 ]
Veremchuk, Igor [2 ]
Kosub, Tobias [2 ]
Huebner, Rene [2 ]
Sheka, Denis D. [5 ]
Maletinsky, Patrick [4 ]
Makarov, Denys [2 ]
机构
[1] Qnami AG, CH-4132 Muttenz, Switzerland
[2] Helmholtz Zentrum Dresden Rossendorf E V, Inst Ion Beam Phys & Mat Res, D-01328 Dresden, Germany
[3] Kyiv Acad Univ, UA-03142 Kyiv, Ukraine
[4] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[5] Taras Shevchenko Natl Univ Kyiv, UA-01601 Kyiv, Ukraine
关键词
granular antiferromagnets; magnetoelectric Cr2O3; bit; nitrogen vacancy magnetometry; antiferromagnetic domains; magnetic memory; spintronics; NEEL TEMPERATURE;
D O I
10.1021/acs.nanolett.4c03044
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetism of oxide antiferromagnets (AFMs) has been studied in single crystals and extended thin films. The properties of AFM nanostructures still remain underexplored. Here, we report on the fabrication and magnetic imaging of granular 100 nm-thick magnetoelectric Cr2O3 films patterned in circular bits with diameters ranging from 500 down to 100 nm. With the change of the lateral size, the domain structure evolves from a multidomain state for larger bits to a single domain state for the smallest bits. Based on spin-lattice simulations, we show that the physics of the domain pattern formation in granular AFM bits is primarily determined by the energy dissipation upon cooling, which results in motion and expelling of AFM domain walls of the bit. Our results provide a way toward the fabrication of single domain AFM-bit-patterned memory devices and the exploration of the interplay between AFM nanostructures and their geometric shape.
引用
收藏
页码:13172 / 13178
页数:7
相关论文
共 50 条
  • [31] Nonlinear spectroscopy of antiferromagnetic Cr2O3
    Fiebig, M
    Frohlich, D
    Pisarev, RV
    JOURNAL OF APPLIED PHYSICS, 1997, 81 (08) : 4875 - 4877
  • [32] Thin Cr2O3 Films for Magnetoelectric Data Storage Deposited by Reactive E-beam Evaporation
    Borisov, P.
    Hochstrat, A.
    Shvartsman, V. V.
    Kleemann, W.
    Eimueller, T.
    Rodriguez, A. Fraile
    FERROELECTRICS, 2008, 370 : 147 - 152
  • [33] MAGNETOELECTRIC EFFECTS IN CR2O3 AND (CR2O3)0.8.(AL2O3)0.2
    FONER, S
    HANABUSA, M
    JOURNAL OF APPLIED PHYSICS, 1963, 34 (04) : 1246 - &
  • [34] Cr2O3 Thin Films on Ag, (111) by XPS
    Priyantha, W. A. A.
    Waddill, George D.
    SURFACE SCIENCE SPECTRA, 2006, 13 (01): : 94 - 99
  • [35] Diffusion of iron in Cr2O3:: polycrystals and thin films
    Sabioni, ACS
    Huntz, AM
    Silva, F
    Jomard, F
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 392 (1-2): : 254 - 261
  • [36] Quadrupole magnetic field of magnetoelectric Cr2O3
    Astrov, D.N.
    Ermakov, N.B.
    JETP Letters (Translation of JETP Pis'ma v Redaktsiyu), 1994, 59 (04):
  • [37] On the sign of the linear magnetoelectric coefficient in Cr2O3
    Bousquet, Eric
    Lelievre-Berna, Eddy
    Qureshi, Navid
    Soh, Jian-Rui
    Spaldin, Nicola A.
    Urru, Andrea
    Verbeek, Xanthe H.
    Weber, Sophie F.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (15)
  • [38] A study of magnetoelectric domain formation in Cr2O3
    Brown, PJ
    Forsyth, JB
    Tasset, F
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (03) : 663 - 672
  • [39] OBSERVATION OF MAGNETOELECTRIC EFFECT IN CR2O3 POWERS
    SHTRIKMAN, S
    TREVES, D
    PHYSICAL REVIEW, 1963, 130 (03): : 986 - &
  • [40] ON ORIGIN OF AXIAL MAGNETOELECTRIC EFFECT OF CR2O3
    ALEXANDER, S
    SHTRIKMAN, S
    SOLID STATE COMMUNICATIONS, 1966, 4 (03) : 115 - +