Antiferromagnetic Nanoscale Bit Arrays of Magnetoelectric Cr2O3 Thin Films

被引:0
|
作者
Rickhaus, Peter [1 ]
Pylypovskyi, Oleksandr V. [2 ,3 ]
Seniutinas, Gediminas [1 ]
Borras, Vicent [1 ]
Lehmann, Paul [4 ]
Wagner, Kai [4 ]
Zaper, Liza [1 ,4 ]
Prusik, Paulina J. [2 ]
Makushko, Pavlo [2 ]
Veremchuk, Igor [2 ]
Kosub, Tobias [2 ]
Huebner, Rene [2 ]
Sheka, Denis D. [5 ]
Maletinsky, Patrick [4 ]
Makarov, Denys [2 ]
机构
[1] Qnami AG, CH-4132 Muttenz, Switzerland
[2] Helmholtz Zentrum Dresden Rossendorf E V, Inst Ion Beam Phys & Mat Res, D-01328 Dresden, Germany
[3] Kyiv Acad Univ, UA-03142 Kyiv, Ukraine
[4] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[5] Taras Shevchenko Natl Univ Kyiv, UA-01601 Kyiv, Ukraine
关键词
granular antiferromagnets; magnetoelectric Cr2O3; bit; nitrogen vacancy magnetometry; antiferromagnetic domains; magnetic memory; spintronics; NEEL TEMPERATURE;
D O I
10.1021/acs.nanolett.4c03044
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetism of oxide antiferromagnets (AFMs) has been studied in single crystals and extended thin films. The properties of AFM nanostructures still remain underexplored. Here, we report on the fabrication and magnetic imaging of granular 100 nm-thick magnetoelectric Cr2O3 films patterned in circular bits with diameters ranging from 500 down to 100 nm. With the change of the lateral size, the domain structure evolves from a multidomain state for larger bits to a single domain state for the smallest bits. Based on spin-lattice simulations, we show that the physics of the domain pattern formation in granular AFM bits is primarily determined by the energy dissipation upon cooling, which results in motion and expelling of AFM domain walls of the bit. Our results provide a way toward the fabrication of single domain AFM-bit-patterned memory devices and the exploration of the interplay between AFM nanostructures and their geometric shape.
引用
收藏
页码:13172 / 13178
页数:7
相关论文
共 50 条
  • [21] Phonon Anomalies in Magnetoelectric Cr2O3
    Dwij, Vivek
    Sharma, Gaurav
    Tyagi, Shekhar
    De, Binoy Krishna
    Sathe, V. G.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2018, 2019, 2115
  • [22] Magnetoelectric Cr2O3 for spintronic applications
    Borisov, P.
    Hochstrat, A.
    Shvartsman, V. V.
    Kleemann, W.
    Hauck, P. M.
    INTEGRATED FERROELECTRICS, 2008, 99 : 69 - 76
  • [23] THEORY OF MAGNETOELECTRIC EFFECT IN CR2O3
    IZUYAMA, T
    PRATT, GW
    JOURNAL OF APPLIED PHYSICS, 1963, 34 (04) : 1226 - &
  • [24] ANISOTROPY OF MAGNETOELECTRIC EFFECT IN CR2O3
    FOLEN, VJ
    RADO, GT
    STALDER, EW
    PHYSICAL REVIEW LETTERS, 1961, 6 (11) : 607 - &
  • [25] Nonlinear spectroscopy of antiferromagnetic Cr2O3
    Fiebig, M.
    Froehlich, D.
    Pisarev, R.V.
    Journal of Applied Physics, 1997, 81 (8 pt 2B): : 4875 - 4877
  • [26] OPTICAL SPECTRUM OF ANTIFERROMAGNETIC CR2O3
    VANDERZIEL, JP
    PHYSICAL REVIEW, 1967, 161 (02): : 483 - +
  • [27] ANTIFERROMAGNETIC DOMAIN SWITCHING IN CR2O3
    MARTIN, TJ
    ANDERSON, JC
    IEEE TRANSACTIONS ON MAGNETICS, 1966, MAG2 (03) : 446 - &
  • [28] Magnetoelectric Switching Energy of Antiferromagnetic Cr2O3 Used for Spintronic Logic Devices and Memory
    Ye, Shujun
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2022, 16 (01):
  • [29] ANTIFERROMAGNETIC DOMAIN SWITCHING IN CR2O3
    MARTIN, TJ
    PHYSICS LETTERS, 1965, 17 (02): : 83 - &
  • [30] EXCITON BANDS IN ANTIFERROMAGNETIC CR2O3
    MACFARLANE, RM
    ALLEN, JW
    PHYSICAL REVIEW B-SOLID STATE, 1971, 4 (09): : 3054 - +