Superconductivity and Mott Physics in Organic Charge Transfer Materials

被引:0
|
作者
Menke, Henri [1 ,2 ]
Klett, Marcel [1 ]
Kanoda, Kazushi [1 ,3 ,4 ]
Georges, Antoine [5 ,6 ,7 ,8 ]
Ferrero, Michel [5 ,7 ]
Schaefer, Thomas [1 ]
机构
[1] Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Phys, D-91058 Erlangen, Germany
[3] Univ Stuttgart, Phys Inst, D-70569 Stuttgart, Germany
[4] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
[5] Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[6] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[7] Ecole Polytech, Inst Polytech Paris, CPHT, CNRS, F-91128 Palaiseau, France
[8] Univ Geneva, Dept Quantum Matter Phys, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
基金
日本学术振兴会;
关键词
ELECTRON CORRELATIONS; SPIN GAP; TRANSITION; FERROMAGNETISM; ANTIFERROMAGNETISM; CRITICALITY; SYSTEMS;
D O I
10.1103/PhysRevLett.133.136501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase diagrams of quasi two-dimensional organic superconductors display a plethora of fundamental phenomena associated with strong electron correlations, such as unconventional superconductivity, metal-insulator transitions, frustrated magnetism and spin liquid behavior. We analyze a minimal model for these compounds, the Hubbard model on an anisotropic triangular lattice, using cutting- edge quantum embedding methods respecting the lattice symmetry. We demonstrate the existence of unconventional superconductivity by directly entering the symmetry-broken phase. We show that the crossover from the Fermi liquid metal to the Mott insulator is associated with the formation of a pseudogap. The predicted momentum-selective destruction of the Fermi surface into hot and cold regions provides motivation for further spectroscopic studies. Our theoretical results agree with experimental phase diagrams of kappa-BEDT organics.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] THE MOTT TRANSITION AND SUPERCONDUCTIVITY
    ELIASHBERG, GM
    VONDERLINDEN, W
    JETP LETTERS, 1994, 59 (06) : 441 - 445
  • [42] MOTT TRANSITION AND SUPERCONDUCTIVITY
    ELIASHBERG, GM
    ANNALES DE PHYSIQUE, 1994, 19 (04) : 353 - 366
  • [43] MOTT TRANSITION AND SUPERCONDUCTIVITY
    ELIASHBERG, GM
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1994, 235 : 2149 - 2150
  • [44] Quantum criticality of Mott transition in organic materials
    Furukawa, Tetsuya
    Miyagawa, Kazuya
    Taniguchi, Hiromi
    Kato, Reizo
    Kanoda, Kazushi
    NATURE PHYSICS, 2015, 11 (03) : 221 - 224
  • [45] Gossamer superconductivity near antiferromagnetic mott insulator in layered organic conductors
    Gan, JY
    Chen, Y
    Su, ZB
    Zhang, FC
    PHYSICAL REVIEW LETTERS, 2005, 94 (06)
  • [46] ON THE MECHANISM OF D-WAVE HIGH TC SUPERCONDUCTIVITY BY THE INTERPLAY OF JAHN-TELLER PHYSICS AND MOTT PHYSICS
    Ushio, H.
    Matsuno, S.
    Kamimura, H.
    QUANTUM BIO-INFORMATICS IV: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2011, 28 : 469 - 490
  • [47] Quasiparticle charge in superconductors: Effect of Mott physics or hidden order parameter
    Kee, HY
    Kim, YB
    PHYSICAL REVIEW B, 2002, 66 (05)
  • [48] Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity
    Weng, Zheng-Yu
    FRONTIERS OF PHYSICS, 2011, 6 (04) : 370 - 378
  • [49] Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity
    Zheng-Yu Weng
    Frontiers of Physics, 2011, 6 : 370 - 378
  • [50] Infrared organic photovoltaic device based on charge transfer interaction between organic materials
    Mo, Hin-Wai
    Ng, Tsz-Wai
    To, Chap-Hang
    Lo, Ming-Fai
    Zapien, J. Antonio
    Lee, Chun-Sing
    ORGANIC ELECTRONICS, 2013, 14 (01) : 291 - 294