Superconductivity and Mott Physics in Organic Charge Transfer Materials

被引:0
|
作者
Menke, Henri [1 ,2 ]
Klett, Marcel [1 ]
Kanoda, Kazushi [1 ,3 ,4 ]
Georges, Antoine [5 ,6 ,7 ,8 ]
Ferrero, Michel [5 ,7 ]
Schaefer, Thomas [1 ]
机构
[1] Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Phys, D-91058 Erlangen, Germany
[3] Univ Stuttgart, Phys Inst, D-70569 Stuttgart, Germany
[4] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
[5] Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[6] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[7] Ecole Polytech, Inst Polytech Paris, CPHT, CNRS, F-91128 Palaiseau, France
[8] Univ Geneva, Dept Quantum Matter Phys, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
基金
日本学术振兴会;
关键词
ELECTRON CORRELATIONS; SPIN GAP; TRANSITION; FERROMAGNETISM; ANTIFERROMAGNETISM; CRITICALITY; SYSTEMS;
D O I
10.1103/PhysRevLett.133.136501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase diagrams of quasi two-dimensional organic superconductors display a plethora of fundamental phenomena associated with strong electron correlations, such as unconventional superconductivity, metal-insulator transitions, frustrated magnetism and spin liquid behavior. We analyze a minimal model for these compounds, the Hubbard model on an anisotropic triangular lattice, using cutting- edge quantum embedding methods respecting the lattice symmetry. We demonstrate the existence of unconventional superconductivity by directly entering the symmetry-broken phase. We show that the crossover from the Fermi liquid metal to the Mott insulator is associated with the formation of a pseudogap. The predicted momentum-selective destruction of the Fermi surface into hot and cold regions provides motivation for further spectroscopic studies. Our theoretical results agree with experimental phase diagrams of kappa-BEDT organics.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] CHARGE-TRANSFER INSTABILITY AND SUPERCONDUCTIVITY
    MIYANAGA, A
    HASEGAWA, Y
    FUKUYAMA, H
    PHYSICA C, 1991, 185 (pt 3): : 1647 - 1648
  • [32] Ultrafast probes of charge transfer states in organic photovoltaic materials
    Pensack, Ryan D.
    Asbury, John B.
    CHEMICAL PHYSICS LETTERS, 2011, 515 (4-6) : 197 - 205
  • [33] π-Distorted charge transfer chromophores and their materials chemistry in organic photovoltaics
    Raheem, Abbasriyaludeen Abdul
    Praveen, Chandrasekar
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (24) : 8611 - 8646
  • [34] Exploring Charge Transfer Mechanism in Organic NLO (Polymorphic) Materials
    Munshi, P.
    Jha, K.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C378 - C378
  • [35] Integrated Charge Transfer in Organic Ferroelectrics for Flexible Multisensing Materials
    Xu, Beibei
    Ren, Shenqiang
    SMALL, 2016, 12 (33) : 4502 - 4507
  • [36] Predictive computational methods for charge transfer in organic optoelectronic materials
    Phillips, Heidi
    Zheng, Shaohui
    Geva, Eitan
    Dunietz, Barry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [37] Organic charge transfer complex towards functional optical materials
    Kalita, Kalyan Jyoti
    Arikkottira, M. Rakhi
    Vijayaraghavan, Ratheesh K.
    CRYSTENGCOMM, 2024, 26 (35) : 4751 - 4765
  • [38] SUPERCONDUCTIVITY AND MOTT LOCALIZATION
    LAVAGNA, M
    ANNALES DE PHYSIQUE, 1988, 13 (05) : 441 - 446
  • [39] From valence bond solid to unconventional superconductivity in the organic charge-transfer solids
    Mazumdar, S.
    Clay, R. T.
    Li, H.
    SYNTHETIC METALS, 2009, 159 (21-22) : 2419 - 2421
  • [40] Fingerprints of Mott superconductivity
    Wang, QH
    CHINESE PHYSICS LETTERS, 2003, 20 (09) : 1582 - 1585