Superconductivity and Mott Physics in Organic Charge Transfer Materials

被引:0
|
作者
Menke, Henri [1 ,2 ]
Klett, Marcel [1 ]
Kanoda, Kazushi [1 ,3 ,4 ]
Georges, Antoine [5 ,6 ,7 ,8 ]
Ferrero, Michel [5 ,7 ]
Schaefer, Thomas [1 ]
机构
[1] Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Phys, D-91058 Erlangen, Germany
[3] Univ Stuttgart, Phys Inst, D-70569 Stuttgart, Germany
[4] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
[5] Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[6] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[7] Ecole Polytech, Inst Polytech Paris, CPHT, CNRS, F-91128 Palaiseau, France
[8] Univ Geneva, Dept Quantum Matter Phys, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
基金
日本学术振兴会;
关键词
ELECTRON CORRELATIONS; SPIN GAP; TRANSITION; FERROMAGNETISM; ANTIFERROMAGNETISM; CRITICALITY; SYSTEMS;
D O I
10.1103/PhysRevLett.133.136501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase diagrams of quasi two-dimensional organic superconductors display a plethora of fundamental phenomena associated with strong electron correlations, such as unconventional superconductivity, metal-insulator transitions, frustrated magnetism and spin liquid behavior. We analyze a minimal model for these compounds, the Hubbard model on an anisotropic triangular lattice, using cutting- edge quantum embedding methods respecting the lattice symmetry. We demonstrate the existence of unconventional superconductivity by directly entering the symmetry-broken phase. We show that the crossover from the Fermi liquid metal to the Mott insulator is associated with the formation of a pseudogap. The predicted momentum-selective destruction of the Fermi surface into hot and cold regions provides motivation for further spectroscopic studies. Our theoretical results agree with experimental phase diagrams of kappa-BEDT organics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Recent development of charge-transfer and superconductivity in organic materials
    Misaki, Y
    Mori, T
    DENKI KAGAKU, 1998, 66 (05): : 486 - 492
  • [2] Superconductivity of Organic Charge-Transfer Salts
    J. Wosnitza
    Journal of Low Temperature Physics, 2019, 197 : 250 - 271
  • [3] SUPERCONDUCTIVITY IN ORGANIC CHARGE-TRANSFER SALTS
    ISHIGURO, T
    PHYSICA C, 1988, 153 : 1055 - 1061
  • [4] Superconductivity of Organic Charge-Transfer Salts
    Wosnitza, J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2019, 197 (3-4) : 250 - 271
  • [5] ORGANIC CHARGE-TRANSFER SALT SHOWS SUPERCONDUCTIVITY
    不详
    PHYSICS TODAY, 1981, 34 (02) : 17 - 19
  • [6] Charge Transfer in Organic Semiconductive Materials
    Zhou, Xue-Qin
    Wang, Mang
    Yang, Shi-Lin
    Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao/ Chemical Journal of Chinese Universities, 2000, 21 (08): : 1316 - 1317
  • [7] Charge transfer in organic semiconductive materials
    Zhou, XQ
    Wang, M
    Yang, SL
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2000, 21 (08): : 1312 - 1317
  • [8] Predictions of charge transfer in organic photovoltaic materials
    Goldberg, Alexander
    Halls, Mathew D.
    Cao, Yixing
    Giesen, David
    Hughes, Thomas
    Qwak, Shaun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [9] Doping a Mott insulator: Physics of high-temperature superconductivity
    Lee, PA
    Nagaosa, N
    Wen, XG
    REVIEWS OF MODERN PHYSICS, 2006, 78 (01) : 17 - 85
  • [10] Superconductivity in the charge-transfer and Mott-Hubbard regimes of the three-band Hubbard model
    Kuroki, K
    Aoki, H
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1996, 105 (3-4) : 603 - 608