Pylon: A PyTorch Framework for Learning with Constraints

被引:0
|
作者
Ahmed, Kareem [1 ]
Li, Tao [2 ]
Ton, Thy [3 ]
Guo, Quan [4 ]
Chang, Kai-Wei [1 ]
Kordjamshidi, Parisa [5 ]
Srikumar, Vivek [2 ]
Van den Broeck, Guy [1 ]
Singh, Sameer [3 ]
机构
[1] University of California, Los Angeles, United States
[2] University of Utah, United States
[3] University of California, Irvine, United States
[4] Sichuan University, China
[5] Michigan State University, United States
来源
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
35th Conference on Neural Information Processing Systems, NeurIPS 2021
中图分类号
学科分类号
摘要
Computer games - Deep learning - Domain Knowledge - Natural language processing systems
引用
收藏
页码:319 / 324
相关论文
共 50 条
  • [31] PyTorch: An Imperative Style, High-Performance Deep Learning Library
    Paszke, Adam
    Gross, Sam
    Massa, Francisco
    Lerer, Adam
    Bradbury, James
    Chanan, Gregory
    Killeen, Trevor
    Lin, Zeming
    Gimelshein, Natalia
    Antiga, Luca
    Desmaison, Alban
    Kopf, Andreas
    Yang, Edward
    DeVito, Zach
    Raison, Martin
    Tejani, Alykhan
    Chilamkurthy, Sasank
    Steiner, Benoit
    Fang, Lu
    Bai, Junjie
    Chintala, Soumith
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [32] Studying the Impact of TensorFlow and PyTorch Bindings on Machine Learning Software Quality
    Li, Hao
    Rajbahadur, Gopi krishnan
    Bezemer, Cor-paul
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2025, 34 (01)
  • [33] Integrating physics in deep learning algorithms: a force field as a PyTorch module
    Orlando, Gabriele
    Serrano, Luis
    Schymkowitz, Joost
    Rousseau, Frederic
    BIOINFORMATICS, 2024, 40 (04)
  • [34] Selene: a PyTorch-based deep learning library for sequence data
    Chen, Kathleen M.
    Cofer, Evan M.
    Zhou, Jian
    Troyanskaya, Olga G.
    NATURE METHODS, 2019, 16 (04) : 315 - +
  • [35] Margin Trader: A Reinforcement Learning Framework for Portfolio Management with Margin and Constraints
    Gu, Jingyi
    Du, Wenlu
    Rahman, A. M. Muntasir
    Wang, Guiling
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2023, 2023, : 610 - 618
  • [36] A multi-birth metric learning framework based on binary constraints
    Ren, QiangQiang
    Yuan, Chao
    Zhao, Yifeng
    Yang, Liming
    NEURAL NETWORKS, 2022, 154 : 165 - 178
  • [37] A machine-learning framework for peridynamic material models with physical constraints
    Xu, Xiao
    D'Elia, Marta
    Foster, John T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 386
  • [38] Engine Pylon Topology Optimization Framework Based on Performance and Stress Criteria
    Coniglio, Simone
    Gogu, Christian
    Amargier, Remi
    Morlier, Joseph
    AIAA JOURNAL, 2019, 57 (12) : 5514 - 5526
  • [39] CL-Gym: Full-Featured PyTorch Library for Continual Learning
    Mirzadeh, Seyed Iman
    Ghasemzadeh, Hassan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 3616 - 3622
  • [40] PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models
    Rozemberczki, Benedek
    Scherer, Paul
    He, Yixuan
    Panagopoulos, George
    Riedel, Alexander
    Astefanoaei, Maria
    Kiss, Oliver
    Beres, Ferenc
    Lopez, Guzman
    Collignon, Nicolas
    Sarkar, Rik
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4564 - 4573