Pylon: A PyTorch Framework for Learning with Constraints

被引:0
|
作者
Ahmed, Kareem [1 ]
Li, Tao [2 ]
Ton, Thy [3 ]
Guo, Quan [4 ]
Chang, Kai-Wei [1 ]
Kordjamshidi, Parisa [5 ]
Srikumar, Vivek [2 ]
Van den Broeck, Guy [1 ]
Singh, Sameer [3 ]
机构
[1] University of California, Los Angeles, United States
[2] University of Utah, United States
[3] University of California, Irvine, United States
[4] Sichuan University, China
[5] Michigan State University, United States
来源
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
35th Conference on Neural Information Processing Systems, NeurIPS 2021
中图分类号
学科分类号
摘要
Computer games - Deep learning - Domain Knowledge - Natural language processing systems
引用
收藏
页码:319 / 324
相关论文
共 50 条
  • [21] Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning framework PyTorch
    Laporte, Floris
    Dambre, Joni
    Bienstman, Peter
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [22] PYNQ-Torch: a framework to develop PyTorch accelerators on the PYNQ platform
    Vohra, Manohar
    Fasciani, Stefano
    2019 IEEE 19TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2019), 2019,
  • [23] Qtorch plus : Next Generation Arithmetic for Pytorch Machine Learning
    Nhut-Minh Ho
    De Silva, Himeshi
    Gustafson, John L.
    Wong, Weng-Fai
    NEXT GENERATION ARITHMETIC, CONGA 2022, 2022, 13253 : 31 - 49
  • [24] vid-SAMGRAH: A PyTorch framework for multi-latent space reinforcement learning driven video summarization in ultrasound imaging
    Mathews, Roshan P.
    Panicker, Mahesh Raveendranatha
    Hareendranathan, Abhilash R.
    SOFTWARE IMPACTS, 2021, 10
  • [25] A Theoretical Framework for Learning Bayesian Networks with Parameter Inequality Constraints
    Niculescu, Radu Stefan
    Mitchell, Tom M.
    Rao, R. Bharat
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 155 - 160
  • [26] A unified framework for structured graph learning via spectral constraints
    Kumar, Sandeep
    Ying, Jiaxi
    Cardoso, José Vinícius de M.
    Palomar, Daniel P.
    Journal of Machine Learning Research, 2020, 21
  • [27] A discriminative learning framework with pairwise constraints for video object classification
    Yan, R
    Zhang, J
    Yang, J
    Hauptmann, AG
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (04) : 578 - 593
  • [28] A Unified Framework for Structured Graph Learning via Spectral Constraints
    Kumar, Sandeep
    Ying, Jiaxi
    Cardoso, Jose Vincius de M.
    Palomar, Daniel P.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [29] A discriminative learning framework with pairwise constraints for video object classification
    Yan, R
    Zhang, J
    Yang, J
    Hauptmann, A
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 284 - 291
  • [30] Selene: a PyTorch-based deep learning library for sequence data
    Kathleen M. Chen
    Evan M. Cofer
    Jian Zhou
    Olga G. Troyanskaya
    Nature Methods, 2019, 16 : 315 - 318