Pylon: A PyTorch Framework for Learning with Constraints

被引:0
|
作者
Ahmed, Kareem [1 ]
Li, Tao [2 ]
Ton, Thy [3 ]
Guo, Quan [4 ]
Chang, Kai-Wei [1 ]
Kordjamshidi, Parisa [5 ]
Srikumar, Vivek [2 ]
Van den Broeck, Guy [1 ]
Singh, Sameer [3 ]
机构
[1] University of California, Los Angeles, United States
[2] University of Utah, United States
[3] University of California, Irvine, United States
[4] Sichuan University, China
[5] Michigan State University, United States
来源
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
35th Conference on Neural Information Processing Systems, NeurIPS 2021
中图分类号
学科分类号
摘要
Computer games - Deep learning - Domain Knowledge - Natural language processing systems
引用
收藏
页码:319 / 324
相关论文
共 50 条
  • [1] PYLON: A PyTorch Framework for Learning with Constraints
    Ahmed, Kareem
    Li, Tao
    Ton, Thy
    Guo, Quan
    Chang, Kai-Wei
    Kordjamshidi, Parisa
    Srikumar, Vivek
    Van den Broeck, Guy
    Singh, Sameer
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 13152 - 13154
  • [2] Pylon: A PyTorch Framework for Learning with Constraints
    Ahmed, Kareem
    Li, Tao
    Ton, Thy
    Guo, Quan
    Chang, Kai-Wei
    Kordjamshidi, Parisa
    Srikumar, Vivek
    Van den Broeck, Guy
    Singh, Sameer
    NEURIPS 2021 COMPETITIONS AND DEMONSTRATIONS TRACK, VOL 176, 2021, 176 : 319 - 324
  • [3] Attacks on Machine Learning Models Based on the PyTorch Framework
    Namiot, D. E.
    Bidzhiev, T. M.
    AUTOMATION AND REMOTE CONTROL, 2024, 85 (03) : 263 - 271
  • [4] Using Deep Learning Framework (pytorch) for Circular Cone Treatment Planning of CyberKnife System
    Liang, B.
    Wei, R.
    Li, Y.
    Liu, B.
    Xu, S.
    Zhou, F.
    Wu, Q.
    Dai, J.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [5] tntorch: Tensor Network Learning with PyTorch
    Usvyatsov, Mikhail
    Ballester-Ripoll, Rafael
    Schindler, Konrad
    Journal of Machine Learning Research, 2022, 23
  • [6] PiShield: A PyTorch Package for Learning with Requirements
    Stoian, Mihaela Catalina
    Tatomir, Alex
    Lukasiewicz, Thomas
    Giunchiglia, Eleonora
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 8805 - 8809
  • [7] Implementing CUDA Unified Memory in the PyTorch Framework
    Choi, Jake
    Yeom, Heon Young
    Kim, Yoonhee
    2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS COMPANION (ACSOS-C 2021), 2021, : 20 - 25
  • [8] tntorch: Tensor Network Learning with PyTorch
    Usvyatsov, Mikhail
    Ballester-Ripoll, Rafael
    Schindler, Konrad
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [9] Knodle: ModularWeakly Supervised Learning with PyTorch
    Sedova, Anastasiia
    Stephan, Andreas
    Speranskaya, Marina
    Roth, Benjamin
    REPL4NLP 2021: PROCEEDINGS OF THE 6TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP, 2021, : 100 - 111
  • [10] Lettuce: PyTorch-Based Lattice Boltzmann Framework
    Bedrunka, Mario Christopher
    Wilde, Dominik
    Kliemank, Martin
    Reith, Dirk
    Foysi, Holger
    Kraemer, Andreas
    HIGH PERFORMANCE COMPUTING - ISC HIGH PERFORMANCE DIGITAL 2021 INTERNATIONAL WORKSHOPS, 2021, 12761 : 40 - 55