Estimation and Bayesian Prediction of the Generalized Pareto Distribution in the Context of a Progressive Type-II Censoring Scheme

被引:0
|
作者
Ye, Tianrui [1 ]
Gui, Wenhao [2 ]
机构
[1] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
关键词
generalized Pareto distribution; expectation-maximization algorithm; progressive Type-II censoring; Metropolis-Hasting approach; Bayesian estimation; Bayesian prediction; GOODNESS-OF-FIT; PARAMETER-ESTIMATION;
D O I
10.3390/app14188433
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The generalized Pareto distribution plays a significant role in reliability research. This study concentrates on the statistical inference of the generalized Pareto distribution utilizing progressively Type-II censored data. Estimations are performed using maximum likelihood estimation through the expectation-maximization approach. Confidence intervals are derived using the asymptotic confidence intervals. Bayesian estimations are conducted using the Tierney and Kadane method alongside the Metropolis-Hastings algorithm, and the highest posterior density credible interval estimation is accomplished. Furthermore, Bayesian predictive intervals and future sample estimations are explored. To illustrate these inference techniques, a simulation and practical example are presented for analysis.
引用
收藏
页数:18
相关论文
共 50 条