Estimation and Bayesian Prediction of the Generalized Pareto Distribution in the Context of a Progressive Type-II Censoring Scheme

被引:0
|
作者
Ye, Tianrui [1 ]
Gui, Wenhao [2 ]
机构
[1] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
关键词
generalized Pareto distribution; expectation-maximization algorithm; progressive Type-II censoring; Metropolis-Hasting approach; Bayesian estimation; Bayesian prediction; GOODNESS-OF-FIT; PARAMETER-ESTIMATION;
D O I
10.3390/app14188433
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The generalized Pareto distribution plays a significant role in reliability research. This study concentrates on the statistical inference of the generalized Pareto distribution utilizing progressively Type-II censored data. Estimations are performed using maximum likelihood estimation through the expectation-maximization approach. Confidence intervals are derived using the asymptotic confidence intervals. Bayesian estimations are conducted using the Tierney and Kadane method alongside the Metropolis-Hastings algorithm, and the highest posterior density credible interval estimation is accomplished. Furthermore, Bayesian predictive intervals and future sample estimations are explored. To illustrate these inference techniques, a simulation and practical example are presented for analysis.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Bayesian and E-Bayesian Estimation for a Modified Topp Leone-Chen Distribution Based on a Progressive Type-II Censoring Scheme
    Kalantan, Zakiah I.
    Swielum, Eman M.
    AL-Sayed, Neama T.
    EL-Helbawy, Abeer A.
    AL-Dayian, Gannat R.
    Abd Elaal, Mervat
    SYMMETRY-BASEL, 2024, 16 (08):
  • [22] Robust Bayesian estimation of a bathtub-shaped distribution under progressive Type-II censoring
    Seo, Jung In
    Kang, Suk Bok
    Kim, Yongku
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 1008 - 1023
  • [23] Bayesian analysis for lognormal distribution under progressive Type-II censoring
    Singh, Sukhdev
    Tripathi, Yogesh Mani
    Wu, Shuo-Jye
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (05): : 1488 - 1504
  • [24] On the joint Type-II progressive censoring scheme
    Mondal, Shuvashree
    Kundu, Debasis
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (04) : 958 - 976
  • [25] Prediction under an adaptive progressive type-II censoring scheme for Burr Type-XII distribution
    Ateya, Saieed F.
    Amein, M. M.
    Mohammed, Heba S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (12) : 4029 - 4041
  • [26] Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring
    Muhammed H.Z.
    Almetwally E.M.
    Annals of Data Science, 2023, 10 (02) : 481 - 512
  • [27] Estimation of stress–strength reliability for Maxwell distribution under progressive type-II censoring scheme
    Chaudhary S.
    Tomer S.K.
    International Journal of System Assurance Engineering and Management, 2018, 9 (5) : 1107 - 1119
  • [28] Bayesian estimation of R = P[Y < X] for inverse Lomax distribution under progressive type-II censoring scheme
    Yadav, Abhimanyu Singh
    Singh, S. K.
    Singh, Umesh
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2019, 10 (05) : 905 - 917
  • [29] Bayesian Estimation of Gumbel Type-II Distribution under Type-II Censoring with Medical Applications
    Abbas, Kamran
    Hussain, Zamir
    Rashid, Noreen
    Ali, Amjad
    Taj, Muhammad
    Khan, Sajjad Ahmad
    Manzoor, Sadaf
    Khalil, Umair
    Khan, Dost Muhammad
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020
  • [30] Bayesian Estimation of the Exponential Parameter under a Multiply Type-II Censoring Scheme
    Singh, Umesh
    Kumar, Anil
    AUSTRIAN JOURNAL OF STATISTICS, 2007, 36 (03) : 227 - 238