Determination of natural turmeric dyes using near-infrared spectroscopy

被引:0
|
作者
Sun, Jieqing [1 ]
Zhang, Yuanyuan [1 ]
Zhang, Yuanming [1 ]
Zhao, Haiguang [1 ]
Han, Guangting [1 ]
Via, Brian K. [2 ]
Jiang, Wei [1 ]
机构
[1] Qingdao Univ, Coll Text & Clothing, State Key Lab Biofibers & Ecotext, Qingdao 266000, Shandong, Peoples R China
[2] Auburn Univ, Coll Forestry Wildlife & Environm, Auburn, AL 36849 USA
关键词
Natural dye; Curcuminoid compounds; Near-infrared; Quantitative analysis; CURCUMINOIDS; SPECTRA;
D O I
10.1016/j.indcrop.2024.119817
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Turmeric extracted from natural plants serves as a commonly natural dye but currently faces quality challenges due to the absence of standardization. Rapid determination of natural turmeric dye contents before the dyeing process is paramount. In this study, to determine the content of total and separate curcuminoid compounds, 155 samples of turmeric dyes were analyzed using both high-performance liquid chromatography and near-infrared technology. The near-infrared spectra within the range of 8000-5000 cm(-1) were selected, and after method optimization, the spectral preprocessing method of Savitzky-Golay smoothing (SG) + standard normal variate transformation (SNV) / multiplicative scatter correction (MSC) + first derivative (1st-Der) were used to construct the partial least squares (PLS) quantitative prediction models. Method validation results showed that the optimized model revealed exceptional prediction accuracy. In general, the total curcuminoid compounds quantitative prediction model demonstrated higher accuracy than that of the separate compounds, with R-2 > 0.99 and RPD > 10. In contrast, the separate curcuminoid compounds quantitative prediction model has R-2 > 0.97 and RPD > 6. Both models are suitable for turmeric dyes, and as fast and flexible detection methods, they are suitable for industrial production.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Determination of sodium alginate in algae by near-infrared spectroscopy
    Xu, Peilong
    Na, Na
    Gao, Shouwu
    Geng, Cunzhen
    DESALINATION AND WATER TREATMENT, 2019, 168 : 117 - 122
  • [32] Quantitative determination of water in γ-cyclodextrin by near-infrared spectroscopy
    Viernstein, H
    Weiss-Greiler, P
    Wolschann, P
    PHARMAZEUTISCHE INDUSTRIE, 2005, 67 (01): : 122 - 125
  • [33] Gossypol determination by near-infrared reflectance spectroscopy.
    不详
    POULTRY SCIENCE, 2004, 83 (10) : 1779 - 1779
  • [34] Near-infrared spectroscopy for fast determination of biomass components
    Liu, Hanbin
    Sun, Lan
    Li, Chenlin
    Varanasi, Patanjali
    Arora, Rohit
    Cheng, Gang
    Simmons, Blake A.
    Singh, Seema
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [35] Rapid determination of Panax ginseng by near-infrared spectroscopy
    Bu Haibo
    Nie Lixing
    Wang Dan
    Yuan Shaoxiong
    Li Shan
    Guo Zhiyong
    Xu Xiaojia
    Wang Gangli
    Li Xiangri
    ANALYTICAL METHODS, 2013, 5 (23) : 6715 - 6721
  • [36] Near-infrared spectroscopy
    Misra, M
    Alp, MS
    Dujovny, M
    Ausman, JI
    JOURNAL OF NEUROSURGERY, 1996, 85 (02) : 363 - 363
  • [37] Near-infrared spectroscopy
    Tsuchikawa, S
    Hayashi, K
    Tsutsumi, S
    APPLIED SPECTROSCOPY, 1996, 50 (09) : 1117 - 1124
  • [38] NEAR-INFRARED SPECTROSCOPY
    HARRIS, DNF
    ANAESTHESIA, 1995, 50 (12) : 1015 - 1016
  • [39] DETERMINATION OF HYDROXYL VALUE OF ALCOHOLS BY NEAR-INFRARED SPECTROSCOPY
    CRISLER, RO
    BURRILL, AM
    ANALYTICAL CHEMISTRY, 1959, 31 (12) : 2055 - 2057
  • [40] DETERMINATION OF IODINE VALUE BY NEAR-INFRARED REFLECTANCE SPECTROSCOPY
    INGBER, NM
    KALKA, DS
    JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1984, 61 (04) : 652 - 652