Determination of natural turmeric dyes using near-infrared spectroscopy

被引:0
|
作者
Sun, Jieqing [1 ]
Zhang, Yuanyuan [1 ]
Zhang, Yuanming [1 ]
Zhao, Haiguang [1 ]
Han, Guangting [1 ]
Via, Brian K. [2 ]
Jiang, Wei [1 ]
机构
[1] Qingdao Univ, Coll Text & Clothing, State Key Lab Biofibers & Ecotext, Qingdao 266000, Shandong, Peoples R China
[2] Auburn Univ, Coll Forestry Wildlife & Environm, Auburn, AL 36849 USA
关键词
Natural dye; Curcuminoid compounds; Near-infrared; Quantitative analysis; CURCUMINOIDS; SPECTRA;
D O I
10.1016/j.indcrop.2024.119817
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Turmeric extracted from natural plants serves as a commonly natural dye but currently faces quality challenges due to the absence of standardization. Rapid determination of natural turmeric dye contents before the dyeing process is paramount. In this study, to determine the content of total and separate curcuminoid compounds, 155 samples of turmeric dyes were analyzed using both high-performance liquid chromatography and near-infrared technology. The near-infrared spectra within the range of 8000-5000 cm(-1) were selected, and after method optimization, the spectral preprocessing method of Savitzky-Golay smoothing (SG) + standard normal variate transformation (SNV) / multiplicative scatter correction (MSC) + first derivative (1st-Der) were used to construct the partial least squares (PLS) quantitative prediction models. Method validation results showed that the optimized model revealed exceptional prediction accuracy. In general, the total curcuminoid compounds quantitative prediction model demonstrated higher accuracy than that of the separate compounds, with R-2 > 0.99 and RPD > 10. In contrast, the separate curcuminoid compounds quantitative prediction model has R-2 > 0.97 and RPD > 6. Both models are suitable for turmeric dyes, and as fast and flexible detection methods, they are suitable for industrial production.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Rapid determination of cabbage quality using visible and near-infrared spectroscopy
    Kramchote, Somsak
    Nakano, Kazuhiro
    Kanlayanarat, Sirichai
    Ohashi, Shintaroh
    Takizawa, Kenichi
    Bai, Geng
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2014, 59 (02) : 695 - 700
  • [22] Rapid Determination of Degradation of Frying Oil Using Near-Infrared Spectroscopy
    Ma, Jinkui
    Zhang, Han
    Tuchiya, Tomohiro
    Miao, Yelian
    Chen, Jie Yu
    FOOD SCIENCE AND TECHNOLOGY RESEARCH, 2014, 20 (02) : 217 - 223
  • [23] Determination of Sucrose Content in Soybean Using Near-infrared Reflectance Spectroscopy
    Choung, Myoung-Gun
    JOURNAL OF THE KOREAN SOCIETY FOR APPLIED BIOLOGICAL CHEMISTRY, 2010, 53 (04): : 478 - 484
  • [24] Determination of soybean routine quality parameters using near-infrared spectroscopy
    Zhu, Zhenying
    Chen, Shangbing
    Wu, Xueyou
    Xing, Changrui
    Yuan, Jian
    FOOD SCIENCE & NUTRITION, 2018, 6 (04): : 1109 - 1118
  • [25] Quantitative determination and classification of energy drinks using near-infrared spectroscopy
    Racz, Anita
    Heberger, Karoly
    Fodor, Marietta
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2016, 408 (23) : 6403 - 6411
  • [26] Quantitative Determination of Parameters of Substrate Using Near-Infrared Spectroscopy Technique
    Yu Yong-hua
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31 (11) : 2928 - 2931
  • [27] Determination of Sucrose Content in Soybean Using Near-infrared Reflectance Spectroscopy
    Myoung-Gun Choung
    Journal of the Korean Society for Applied Biological Chemistry, 2010, 53 (4): : 478 - 484
  • [28] Determination of camelina seed weight using near-infrared reflectance spectroscopy
    Vollmann, J
    Damboeck, A
    Kuyt, SJH
    Ruckenbauer, P
    PLANT VARIETIES AND SEEDS, 1997, 10 (02): : 95 - 101
  • [29] Non-Destructive Identification of Dyes on Fabric Using Near-Infrared Raman Spectroscopy
    Peterson, Mackenzi
    Kurouski, Dmitry
    MOLECULES, 2023, 28 (23):
  • [30] NEAR-INFRARED ABSORBING DYES
    FABIAN, J
    NAKAZUMI, H
    MATSUOKA, M
    CHEMICAL REVIEWS, 1992, 92 (06) : 1197 - 1226