Lightweight YOLOv5 model based small target detection in power engineering

被引:2
|
作者
Luo P. [1 ]
Zhang X. [1 ]
Wan Y. [1 ]
机构
[1] Nanjing Electricity Supply Industry General Corp., 333 Hanzhongmen Street, Gulou District, Nanjing
来源
Cognitive Robotics | 2023年 / 3卷
关键词
Light-weight model; Power engineering; Small target detection; YOLOv5;
D O I
10.1016/j.cogr.2023.03.002
中图分类号
学科分类号
摘要
Deep learning architectures have yielded a significant leap in target detection performance. However, the high cost of deep learning impedes real-world applications, especially for UAV and UGV platforms. Moreover, detecting small targets is still of lower accuracy in contrast to the large ones. Aiming to comprehensively handle these two issues, a novel SP-CBAM-YOLOv5 architecture is proposed. The main novelty of our hybrid model lies in the cooperation of the attention mechanism and the typical YOLOv5 architecture, which can largely improve the performance of the small target detection. Moreover, the depth convolution and knowledge distillation are jointly introduced for lightening the model architecture. To evaluate the performance of our proposed SP-CBAM-YOLOv5, we built a novel dataset containing challenging scenes of power engineering. Experimental results on this benchmark demonstrate that our proposed SP-CBAM-YOLOv5 achieves a competitive performance in contrast to the other YOLO architectures. Besides, our lightweight YOLOv5 has more than 70% decrease of parameters. Moreover, the ablation study is conducted to demonstrate the compact architecture of SP-CBAM-YOLOv5. © 2023
引用
收藏
页码:45 / 53
页数:8
相关论文
共 50 条
  • [31] Modified YOLOv5 for small target detection in aerial images
    Singh, Inderpreet
    Munjal, Geetika
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 53221 - 53242
  • [32] Lightweight Road Damage Detection Network Based on YOLOv5
    Zhao, Jingwei
    Tao, Ye
    Zhang, Zhixian
    Huang, Chao
    Cui, Wenhua
    ENGINEERING LETTERS, 2024, 32 (08) : 1708 - 1720
  • [33] Water surface garbage detection based on lightweight YOLOv5
    Chen, Luya
    Zhu, Jianping
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [34] Lightweight Security Wear Detection Method Based on YOLOv5
    Liu, Sitong
    Zhang, Nannan
    Yu, Guo
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [35] Modified YOLOv5 for small target detection in aerial images
    Inderpreet Singh
    Geetika Munjal
    Multimedia Tools and Applications, 2024, 83 : 53221 - 53242
  • [36] Lightweight Foggy Weather Detection Algorithm Based on YOLOv5
    Hou, Wenshuai
    Cui, Kaige
    Yan, Jun
    Chang, Jiaxiu
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 338 - 341
  • [37] Seed Germination Detection Method Based on Lightweight YOLOv5
    Zhang, Yuanchang
    Huang, Yongming
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 299 - 304
  • [38] Lightweight highland barley detection based on improved YOLOv5
    Cai, Minghui
    Deng, Hui
    Cai, Jianwei
    Guo, Weipeng
    Hu, Zhipeng
    Yu, Dongzheng
    Zhang, Houxi
    PLANT METHODS, 2025, 21 (01)
  • [39] Improved lightweight road damage detection based on YOLOv5
    Liu, Chang
    Sun, Yu
    Chen, Jin
    Yang, Jing
    Wang, Fengchao
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 314 - 320
  • [40] Fast ship detection based on lightweight YOLOv5 network
    Zheng, Jia-Chun
    Sun, Shi-Dan
    Zhao, Shi-Jia
    IET IMAGE PROCESSING, 2022, 16 (06) : 1585 - 1593