Modified YOLOv5 for small target detection in aerial images

被引:0
|
作者
Inderpreet Singh
Geetika Munjal
机构
[1] Amity University,Amity School of Engineering and Technology
来源
关键词
Computer vision; Object detection; Aerial images; Small target detection;
D O I
暂无
中图分类号
学科分类号
摘要
Object detection is an important field in computer vision. Detecting objects in aerial images is an extremely challenging task as the objects can be very small compared to the size of the image, the objects can have any orientation, and depending upon the altitude, the same object can appear in different sizes. YOLOv5 is a recent object detection algorithm that has a good balance of accuracy and speed. This work focuses on enhancing the YOLOv5 object detection algorithm specifically for small target detection. The accuracy on small objects has been improved by adding a new feature fusion layer in the feature pyramid part of YOLOv5 and using compound scaling to increase the input size. The modified YOLOv5 demonstrates a remarkable 11% improvement in mAP 0.5 on the small vehicle class of the DOTA dataset while being 25% smaller in terms of GFLOPS and achieving a 10.52% faster inference time, making it well-suited for real-time applications. Furthermore, the modified YOLOv5 achieves a notable 45.2% mAP 0.5 compared to 31.7% mAP 0.5 of YOLOv5 on the challenging VisDrone dataset. The modified YOLOv5 outperforms many state-of-the-art algorithms in small target detection in aerial images. In addition to performance evaluation, we also present an analysis of object sizes in pixel areas in the VisDrone and DOTA datasets. The proposed modifications demonstrate the potential for significant advancements in small target detection in aerial images and provide valuable insights for further research in this area.
引用
收藏
页码:53221 / 53242
页数:21
相关论文
共 50 条
  • [1] Modified YOLOv5 for small target detection in aerial images
    Singh, Inderpreet
    Munjal, Geetika
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 53221 - 53242
  • [2] Small Aerial Target Detection Algorithm Based on Improved YOLOv5
    Yang, TianLe
    Chen, JinLong
    Yang, MingHao
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2023, PT II, 2023, 13969 : 207 - 219
  • [3] Research on Improved YOLOv5 Vehicle Target Detection Algorithm in Aerial Images
    Yang, Xue
    Xiu, Jihong
    Liu, Xiaojia
    DRONES, 2024, 8 (05)
  • [4] A small target detection algorithm based on improved YOLOv5 in aerial image
    Zhang P.
    Liu Y.
    PeerJ Computer Science, 2024, 10
  • [5] A small target detection algorithm based on improved YOLOv5 in aerial image
    Zhang, PengLei
    Liu, Yanhong
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [6] Small Target-YOLOv5: Enhancing the Algorithm for Small Object Detection in Drone Aerial Imagery Based on YOLOv5
    Zhou, Jiachen
    Su, Taoyong
    Li, Kewei
    Dai, Jiyang
    SENSORS, 2024, 24 (01)
  • [7] Dense Small Object Detection Algorithm Based on Improved YOLOv5 in UAV Aerial Images
    Chen, Jiahui
    Wang, Xiaohong
    Computer Engineering and Applications, 2024, 60 (03) : 100 - 109
  • [8] Small target detection with remote sensing images based on an improved YOLOv5 algorithm
    Pei, Wenjing
    Shi, Zhanhao
    Gong, Kai
    FRONTIERS IN NEUROROBOTICS, 2023, 16
  • [9] Detection of Urban Trees Using YOLOv5 from Aerial Images
    Park, Che-Won
    Jung, Hyung-Sup
    KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (06) : 1633 - 1641
  • [10] Small Target Detection Algorithm Based on Improved YOLOv5
    Chen, Ruiyun
    Liu, Zhonghua
    Ou, Weihua
    Zhang, Kaibing
    ELECTRONICS, 2024, 13 (21)