TOSS: Deep Learning-Based Track Object Detection Using Smart Sensor

被引:0
|
作者
Rajeswari, D. [1 ]
Rajendran, Srinivasan [2 ]
Arivarasi, A. [3 ]
Govindasamy, Alagiri [4 ]
Ahilan, A. [5 ]
机构
[1] SRM Inst Sci & Technol, Sch Comp, Dept Data Sci & Business Syst, Coll Engn & Technol, Chennai 603203, India
[2] SRM Inst Sci & Technol, Sch Comp, Coll Engn & Technol, Dept Comp Technol, Chennai 603203, India
[3] Vellore Inst Technol Chennai, Sch Elect Engn, Chennai 600127, India
[4] Future Connect Technol Pvt Ltd, Chennai 600034, India
[5] PSN Coll Engn & Technol, Dept Elect & Commun Engn, Tirunelveli 627152, Tamil Nadu, India
关键词
Laser radar; Sensors; Rail transportation; Object detection; Point cloud compression; Intelligent sensors; Accuracy; Rails; Deep learning; Cameras; Deep learning (DL); fault detection; fuzzy logic; object detection; railway track (RT); YOLO network;
D O I
10.1109/JSEN.2024.3447730
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In high-speed railways, train collisions with obstructions on the trackside are prevented using automated railroad security systems. Rail safety is being improved, and accident rates are reduced through continuous research. The rapid advancement of deep learning (DL) has created new possibilities for research. In this article, a novel track object detection using smart sensor (TOSS) approach has been proposed for tracking the objects in railway track (RT) using DL networks. A TOSS approach uses a camera and light detection and ranging (LiDAR) as primary sensors for detecting objects and faults in RT to prevent accidents. Preprocessing methods include data cleaning, min-max normalization, and calibration to ensure data quality by removing unwanted data from datasets. Then, clustering the preprocessed data to determine objects that are initial sizes and positions. In visual data processing, the camera images are denoised using a bilateral filter (BF) to remove noise. In order to prevent accidents on the RT, the YOLOv8 network is utilized to accurately localize and detect objects on the track. The visual and digital data from the camera and LiDAR sensor are given as an input to the fuzzy system. This data will be used to generate the system alert message that is sent to the loco-pilot and nearby control rooms. In the experimental analysis, the proposed TOSS approach achieved an overall accuracy of 98.91% and an mean average precision (mAP) of 97.1% for detecting objects and faults efficiently. The TOSS approach demonstrates significant progress in the overall accuracy range by 13.86%, 10.22%, 5.46%, 8.8%, and 1.50% better than 2-D singular spectrum analysis (SSA) + Deep network, YOLOv8, YOLOv5s-VF, FR-CNN, and YOLO-GD, respectively.
引用
收藏
页码:37678 / 37686
页数:9
相关论文
共 50 条
  • [41] Design and implementation of deep learning-based object detection and tracking system
    Tsai, Tsung-Han
    Wu, Po-Hsien
    INTEGRATION-THE VLSI JOURNAL, 2024, 99
  • [42] Deep Learning-based Object Detection for Crop Monitoring in Soybean Fields
    Pratama, Muhammad Taufiq
    Kim, Sangwook
    Ozawa, Seiichi
    Ohkawa, Takenao
    Chona, Yuya
    Tsuji, Hiroyuki
    Murakami, Noriyuki
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [43] Deep learning-based foreign object detection method for aviation runways
    Wang, Zhe
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2023, 8 (01) : 3187 - 3202
  • [44] Deep learning-based object detection in augmented reality: A systematic review
    Ghasemi, Yalda
    Jeong, Heejin
    Choi, Sung Ho
    Park, Kyeong-Beom
    Lee, Jae Yeol
    COMPUTERS IN INDUSTRY, 2022, 139
  • [45] Research on Deep Learning-based Object Detection Algorithm in Construction Sites
    School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan
    114051, China
    Eng. Lett., 2025, 33 (01): : 1 - 12
  • [46] Road object detection: a comparative study of deep learning-based algorithms
    Bharat Mahaur
    Navjot Singh
    K. K. Mishra
    Multimedia Tools and Applications, 2022, 81 : 14247 - 14282
  • [47] A survey of deep learning-based object detection methods in crop counting
    Huang, Yuning
    Qian, Yurong
    Wei, Hongyang
    Lu, Yiguo
    Ling, Bowen
    Qin, Yugang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 215
  • [48] Road object detection: a comparative study of deep learning-based algorithms
    Mahaur, Bharat
    Singh, Navjot
    Mishra, K. K.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 14247 - 14282
  • [49] Deep Learning-Based Autonomous Cow Detection for Smart Livestock Farming
    Qiao, Yongliang
    Guo, Yangyang
    He, Dongjian
    GREEN, PERVASIVE, AND CLOUD COMPUTING, GPC 2022, 2023, 13744 : 246 - 258
  • [50] DeeSCVHunter: A Deep Learning-Based Framework for Smart Contract Vulnerability Detection
    Yu, Xingxin
    Zhao, Haoyue
    Hou, Botao
    Ying, Zonghao
    Wu, Bin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,