TOSS: Deep Learning-Based Track Object Detection Using Smart Sensor

被引:0
|
作者
Rajeswari, D. [1 ]
Rajendran, Srinivasan [2 ]
Arivarasi, A. [3 ]
Govindasamy, Alagiri [4 ]
Ahilan, A. [5 ]
机构
[1] SRM Inst Sci & Technol, Sch Comp, Dept Data Sci & Business Syst, Coll Engn & Technol, Chennai 603203, India
[2] SRM Inst Sci & Technol, Sch Comp, Coll Engn & Technol, Dept Comp Technol, Chennai 603203, India
[3] Vellore Inst Technol Chennai, Sch Elect Engn, Chennai 600127, India
[4] Future Connect Technol Pvt Ltd, Chennai 600034, India
[5] PSN Coll Engn & Technol, Dept Elect & Commun Engn, Tirunelveli 627152, Tamil Nadu, India
关键词
Laser radar; Sensors; Rail transportation; Object detection; Point cloud compression; Intelligent sensors; Accuracy; Rails; Deep learning; Cameras; Deep learning (DL); fault detection; fuzzy logic; object detection; railway track (RT); YOLO network;
D O I
10.1109/JSEN.2024.3447730
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In high-speed railways, train collisions with obstructions on the trackside are prevented using automated railroad security systems. Rail safety is being improved, and accident rates are reduced through continuous research. The rapid advancement of deep learning (DL) has created new possibilities for research. In this article, a novel track object detection using smart sensor (TOSS) approach has been proposed for tracking the objects in railway track (RT) using DL networks. A TOSS approach uses a camera and light detection and ranging (LiDAR) as primary sensors for detecting objects and faults in RT to prevent accidents. Preprocessing methods include data cleaning, min-max normalization, and calibration to ensure data quality by removing unwanted data from datasets. Then, clustering the preprocessed data to determine objects that are initial sizes and positions. In visual data processing, the camera images are denoised using a bilateral filter (BF) to remove noise. In order to prevent accidents on the RT, the YOLOv8 network is utilized to accurately localize and detect objects on the track. The visual and digital data from the camera and LiDAR sensor are given as an input to the fuzzy system. This data will be used to generate the system alert message that is sent to the loco-pilot and nearby control rooms. In the experimental analysis, the proposed TOSS approach achieved an overall accuracy of 98.91% and an mean average precision (mAP) of 97.1% for detecting objects and faults efficiently. The TOSS approach demonstrates significant progress in the overall accuracy range by 13.86%, 10.22%, 5.46%, 8.8%, and 1.50% better than 2-D singular spectrum analysis (SSA) + Deep network, YOLOv8, YOLOv5s-VF, FR-CNN, and YOLO-GD, respectively.
引用
收藏
页码:37678 / 37686
页数:9
相关论文
共 50 条
  • [31] Object detection and tracking under Complex environment using deep learning-based LPM
    Li, Yundong
    Zhang, Xueyan
    Li, Hongguang
    Zhou, Qichen
    Cao, Xianbin
    Xiao, Zhifeng
    IET COMPUTER VISION, 2019, 13 (02) : 157 - 164
  • [32] A survey of deep learning-based object detection: Application and open issues
    Abdullah, Shaymaa Tarkan
    AL-Nuaimi, Bashar Talib
    Abed, Hazim Noman
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1495 - 1504
  • [33] Deep learning-based object detection in augmented reality: A systematic review
    Ghasemi, Yalda
    Jeong, Heejin
    Choi, Sung Ho
    Park, Kyeong-Beom
    Lee, Jae Yeol
    Computers in Industry, 2022, 139
  • [34] A systematic review and analysis of deep learning-based underwater object detection
    Xu, Shubo
    Zhang, Minghua
    Song, Wei
    Mei, Haibin
    He, Qi
    Liotta, Antonio
    NEUROCOMPUTING, 2023, 527 : 204 - 232
  • [35] A Proposal to Ensure Social Distancing with Deep Learning-based Object Detection
    Mercaldo, Francesco
    Martinelli, Fabio
    Santone, Antonella
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [36] Research on Deep Learning-based Object Detection Algorithm in Construction Sites
    Wang, Xianxing
    Cui, Wenhua
    Tao, Ye
    Shi, Tianwei
    ENGINEERING LETTERS, 2025, 33 (01) : 1 - 12
  • [37] Deep Learning-Based Approach for Object Detection in Robot Football Competition
    Wang, Zhaoyan
    2022 INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML, 2022, : 179 - 185
  • [38] Real-Time Deep Learning-Based Object Detection Framework
    Tarimo, William
    Sabra, Moustafa M.
    Hendre, Shonan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1829 - 1836
  • [39] Deep learning-based object detection for dynamic construction site management
    Xu, Jiayi
    Pan, Wei
    AUTOMATION IN CONSTRUCTION, 2024, 165
  • [40] Deep learning-based underground object detection for urban road pavement
    Kim, Namgyu
    Kim, Kideok
    An, Yun-Kyu
    Lee, Hyun-Jong
    Lee, Jong-Jae
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2020, 21 (13) : 1638 - 1650