Application of Traffic Cone Target Detection Algorithm Based on Improved YOLOv5

被引:1
|
作者
Wang, Mingwu [1 ]
Qu, Dan [2 ]
Wu, Zedong [1 ]
Li, Ao [1 ]
Wang, Nan [1 ]
Zhang, Xinming [3 ]
机构
[1] Shaanxi Univ Technol, Sch Mech Engn, Hanzhong 723001, Peoples R China
[2] Hanjiang Machine Tool Co Ltd, Hanjiang Thread Grinding Machines Res Inst, Hanzhong 723003, Peoples R China
[3] Yangxian Guangda New Energy Machinery Co Ltd, Hanzhong 723300, Peoples R China
关键词
road maintenance; target detection; network deployment; deep learning; automatic traffic cone retractor;
D O I
10.3390/s24227190
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To improve the automation level of highway maintenance operations, the lightweight YOLOv5-Lite-s neural network was deployed in embedded devices to assist an automatic traffic cone retractor in completing recognition and positioning operations. The system used the lightweight shuffle Net network as a backbone for feature extraction, replaced convolutional layers with focus modules to reduce computational complexity, and reduced the use of the C3 layer to increase network speed, thereby meeting the speed and accuracy requirements of traffic cone placement and retraction operations while maintaining acceptable model inference accuracy. The experimental results show that the network could maintain recognition accuracy and speed values of around 89% and 9 fps under different working conditions such as varying distances, lighting conditions, and occlusions, meeting the technical requirements for deploying and retrieving cones at a speed of 30 cones per minute when the operating vehicle's speed was 20 km/h. The automatic traffic cone placement and retraction system operated accurately and stably, achieving the application of machine vision in traffic cone retraction operations.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Fabric defect detection algorithm based on improved YOLOv5
    Li, Feng
    Xiao, Kang
    Hu, Zhengpeng
    Zhang, Guozheng
    VISUAL COMPUTER, 2024, 40 (04): : 2309 - 2324
  • [42] Improved Small Object Detection Algorithm Based on YOLOv5
    Xu, Bo
    Gao, Bin
    Li, Yunhu
    IEEE INTELLIGENT SYSTEMS, 2024, 39 (05) : 57 - 65
  • [43] Vehicle And Pedestrian Detection Algorithm Based on Improved YOLOv5
    Sun, Jiuhan
    Wang, Zhifeng
    IAENG International Journal of Computer Science, 2023, 50 (04)
  • [44] An Improved Distraction Behavior Detection Algorithm Based on YOLOv5
    Zhou, Keke
    Zheng, Guoqiang
    Zhai, Huihui
    Lv, Xiangshuai
    Zhang, Weizhen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (02): : 2571 - 2585
  • [45] YOLOv5s FMG: An Improved Small Target Detection Algorithm Based on YOLOv5 in Low Visibility
    Zheng, Yunchang
    Zhan, Yunyue
    Huang, Xiaoying
    Ji, Gaoqing
    IEEE ACCESS, 2023, 11 : 75782 - 75793
  • [46] Detection of Cigar Defect Based on the Improved YOLOv5 Algorithm
    Yang, Xinan
    Gao, Sen
    Xia, Chen
    Zhang, Bo
    Chen, Rui
    Gao, Jie
    Zhu, Wenkui
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 99 - 106
  • [47] Research on improved algorithm for helmet detection based on YOLOv5
    Chun Shan
    HongMing Liu
    Yu Yu
    Scientific Reports, 13
  • [48] A Small Object Detection Algorithm Based on Improved YOLOv5
    Guo L.
    Wang Q.
    Xue W.
    Guo J.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2022, 51 (02): : 251 - 258
  • [49] An Aerial Image Detection Algorithm Based on Improved YOLOv5
    Shan, Dan
    Yang, Zhi
    Wang, Xiaofeng
    Meng, Xiangdong
    Zhang, Guangwei
    SENSORS, 2024, 24 (08)
  • [50] Helmet wearing detection algorithm based on improved YOLOv5
    Liu, Yiping
    Jiang, Benchi
    He, Huan
    Chen, Zhijun
    Xu, Zhenfa
    SCIENTIFIC REPORTS, 2024, 14 (01)