Application of Traffic Cone Target Detection Algorithm Based on Improved YOLOv5

被引:1
|
作者
Wang, Mingwu [1 ]
Qu, Dan [2 ]
Wu, Zedong [1 ]
Li, Ao [1 ]
Wang, Nan [1 ]
Zhang, Xinming [3 ]
机构
[1] Shaanxi Univ Technol, Sch Mech Engn, Hanzhong 723001, Peoples R China
[2] Hanjiang Machine Tool Co Ltd, Hanjiang Thread Grinding Machines Res Inst, Hanzhong 723003, Peoples R China
[3] Yangxian Guangda New Energy Machinery Co Ltd, Hanzhong 723300, Peoples R China
关键词
road maintenance; target detection; network deployment; deep learning; automatic traffic cone retractor;
D O I
10.3390/s24227190
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To improve the automation level of highway maintenance operations, the lightweight YOLOv5-Lite-s neural network was deployed in embedded devices to assist an automatic traffic cone retractor in completing recognition and positioning operations. The system used the lightweight shuffle Net network as a backbone for feature extraction, replaced convolutional layers with focus modules to reduce computational complexity, and reduced the use of the C3 layer to increase network speed, thereby meeting the speed and accuracy requirements of traffic cone placement and retraction operations while maintaining acceptable model inference accuracy. The experimental results show that the network could maintain recognition accuracy and speed values of around 89% and 9 fps under different working conditions such as varying distances, lighting conditions, and occlusions, meeting the technical requirements for deploying and retrieving cones at a speed of 30 cones per minute when the operating vehicle's speed was 20 km/h. The automatic traffic cone placement and retraction system operated accurately and stably, achieving the application of machine vision in traffic cone retraction operations.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Hand target detection based on improved YOLOv5
    Xu Z.
    Meng J.
    Fang J.
    International Journal of Wireless and Mobile Computing, 2023, 25 (04) : 353 - 361
  • [22] Improved Fisheye Image Target Detection Algorithm Based on YOLOv5 Network
    Lyu, Xiaoling
    Yang, Shengyue
    Zhang, Minglu
    Liang, Ming
    Wang, Junchao
    Computer Engineering and Applications, 2023, 59 (06): : 241 - 250
  • [23] Small-target smoking detection algorithm based on improved YOLOv5
    Yan, Hong
    Jiang, Zhanbo
    Han, Zeshan
    Jiao, Yufan
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (4-5) : 2187 - 2198
  • [24] A small target detection algorithm based on improved YOLOv5 in aerial image
    Zhang P.
    Liu Y.
    PeerJ Computer Science, 2024, 10
  • [25] Target Detection Algorithm of Remote Sensing Image Based on Improved YOLOv5
    Li, Kunya
    Ou, Ou
    Liu, Guangbin
    Yu, Zefeng
    Li, Lin
    Computer Engineering and Applications, 2023, 59 (09) : 207 - 214
  • [26] A small target detection algorithm based on improved YOLOv5 in aerial image
    Zhang, PengLei
    Liu, Yanhong
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [27] Target Detection Algorithm of UAV Aerial Image Based on Improved YOLOv5
    Li, Xiaolin
    Liu, Dadong
    Liu, Xinman
    Chen, Ze
    Computer Engineering and Applications, 2024, 60 (11) : 204 - 214
  • [28] Traffic Flow Statistics Algorithm Based on Improved YOLOv5
    Xu, Yao
    Qiang, Zanxia
    Guo, Bobo
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 340 - 345
  • [29] Real-Time Detection Algorithm for Small-Target Traffic Signs Based on Improved YOLOv5
    Hu, Junping
    Wang, Hongshu
    Dai, Xiaobiao
    Gao, Xiaolin
    Computer Engineering and Applications, 59 (02): : 185 - 193
  • [30] Traffic Sign Recognition Algorithm Based on Improved YOLOv5
    Sang, Zhengxiao
    Xia, Fuming
    Huang, Han
    Shi, Zhen
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 468 - 472