Quantum measurement encoding for quantum metrology

被引:0
|
作者
Yang, Jing [1 ,2 ]
机构
[1] KTH Royal Inst Technol, Nordita, Hannes Alfvens Vag 12, SE-10691 Stockholm, Sweden
[2] Stockholm Univ, Hannes Alfvens Vag 12, S-10691 Stockholm, Sweden
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
SPIN;
D O I
10.1103/PhysRevResearch.6.043084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Preserving the precision of the parameter of interest in the presence of environmental decoherence is an important yet challenging task in dissipative quantum sensing. In this work, we study quantum metrology when the decoherence effect is unraveled by a set of quantum measurements, dubbed quantum measurement encoding. In our case, the estimation parameter is encoded into a quantum state through a quantum measurement, unlike the parameter encoding through a unitary channel in the decoherence-free case or trace-preserving quantum channels in the case of decoherence. We identify conditions for a precision-preserving measurement encoding. These conditions can be employed to transfer metrological information from one subsystem to another through quantum measurements. Furthermore, postselected non-Hermitian sensing can also be viewed as quantum sensing with measurement encoding. When the precision-preserving conditions are violated in non-Hermitian sensing, we derive a universal formula for the loss of precision.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Development on quantum metrology with quantum Fisher information
    Ren Zhi-Hong
    Li Yan
    Li Yan-Na
    Li Wei-Dong
    ACTA PHYSICA SINICA, 2019, 68 (04)
  • [42] Quantum Fisher information width in quantum metrology
    Bo Liu
    GuoLong Li
    YanMing Che
    Jie Chen
    XiaoGuang Wang
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [43] Quantum metrology with full and fast quantum control
    Sekatski, Pavel
    Skotiniotis, Michalis
    Kolodynski, Jan
    Duer, Wolfgang
    QUANTUM, 2017, 1
  • [44] Quantum metrology with quantum-chaotic sensors
    Lukas J. Fiderer
    Daniel Braun
    Nature Communications, 9
  • [45] Quantum encoding
    May, M
    AMERICAN SCIENTIST, 1996, 84 (06) : 536 - 537
  • [46] Optimal approximate quantum error correction for quantum metrology
    Zhou, Sisi
    Jiang, Liang
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [47] Analysis of quantum information processors using quantum metrology
    Kandula, Mark J.
    Kok, Pieter
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [48] Quantum Metrology Enhanced by Repetitive Quantum Error Correction
    Unden, Thomas
    Balasubramanian, Priya
    Louzon, Daniel
    Vinkler, Yuval
    Plenio, Martin B.
    Markham, Matthew
    Twitchen, Daniel
    Stacey, Alastair
    Lovchinsky, Igor
    Sushkov, Alexander O.
    Lukin, Mikhail D.
    Retzker, Alex
    Naydenov, Boris
    McGuinness, Liam P.
    Jelezko, Fedor
    PHYSICAL REVIEW LETTERS, 2016, 116 (23)
  • [49] Single-shot Adaptive Measurement for Quantum-enhanced Metrology
    Palittapongarnpim, Pantita
    Wittek, Peter
    Sanders, Barry C.
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING XIV, 2016, 9980
  • [50] Photonic quantum metrology with variational quantum optical nonlinearities
    de las Heras, A. Munoz
    Tabares, C.
    Schneider, J. T.
    Tagliacozzo, L.
    Porras, D.
    Gonzalez-Tudela, A.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):