Quantum measurement encoding for quantum metrology

被引:0
|
作者
Yang, Jing [1 ,2 ]
机构
[1] KTH Royal Inst Technol, Nordita, Hannes Alfvens Vag 12, SE-10691 Stockholm, Sweden
[2] Stockholm Univ, Hannes Alfvens Vag 12, S-10691 Stockholm, Sweden
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
SPIN;
D O I
10.1103/PhysRevResearch.6.043084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Preserving the precision of the parameter of interest in the presence of environmental decoherence is an important yet challenging task in dissipative quantum sensing. In this work, we study quantum metrology when the decoherence effect is unraveled by a set of quantum measurements, dubbed quantum measurement encoding. In our case, the estimation parameter is encoded into a quantum state through a quantum measurement, unlike the parameter encoding through a unitary channel in the decoherence-free case or trace-preserving quantum channels in the case of decoherence. We identify conditions for a precision-preserving measurement encoding. These conditions can be employed to transfer metrological information from one subsystem to another through quantum measurements. Furthermore, postselected non-Hermitian sensing can also be viewed as quantum sensing with measurement encoding. When the precision-preserving conditions are violated in non-Hermitian sensing, we derive a universal formula for the loss of precision.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Quantum limits on postselected, probabilistic quantum metrology
    Combes, Joshua
    Ferrie, Christopher
    Jiang, Zhang
    Caves, Carlton M.
    PHYSICAL REVIEW A, 2014, 89 (05):
  • [32] Metrology for Quantum Communications
    Chunnilall, Christopher J.
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [33] Quantum jump metrology
    Clark, Lewis A.
    Stokes, Adam
    Beige, Almut
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [34] Quantum optical metrology
    Alodjants, A. P.
    Tsarev, D., V
    Kuts, D. A.
    Podoshvedov, S. A.
    Kulik, S. P.
    PHYSICS-USPEKHI, 2024, 67 (07) : 668 - 693
  • [35] Quantum Fisher information width in quantum metrology
    Liu, Bo
    Li, GuoLong
    Che, YanMing
    Chen, Jie
    Wang, XiaoGuang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (04)
  • [36] QUANTUM METROLOGY AND SIMULATION
    Taylor, J. M.
    PROCEEDINGS OF THE DALGARNO CELEBRATORY SYMPOSIUM: CONTRIBUTIONS TO ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, ASTROPHYSICS, AND ATMOSPHERIC PHYSICS, 2010, : 340 - 354
  • [37] Contextual quantum metrology
    Jae, Jeongwoo
    Lee, Jiwon
    Kim, M. S.
    Lee, Kwang-Geol
    Lee, Jinhyoung
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [38] QUANTUM RADIOPHYSICS + METROLOGY
    KUBAREV, AV
    MEASUREMENT TECHNIQUES-USSR, 1964, (10): : 810 - &
  • [39] Quantum metrology matrix
    Yuan, Haidong
    Fung, Chi-Hang Fred
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [40] Quantum metrology with quantum-chaotic sensors
    Fiderer, Lukas J.
    Braun, Daniel
    NATURE COMMUNICATIONS, 2018, 9