A multiscale dilated attention network for hyperspectral image classification

被引:0
|
作者
Tu, Chao [1 ]
Liu, Wanjun [2 ]
Jiang, Wentao [2 ]
Zhao, Linlin [2 ]
Yan, Tinghao [2 ]
机构
[1] Liaoning Tech Univ, Sch Geomat, Fuxin 123000, Peoples R China
[2] Liaoning Tech Univ, Sch Software, Huludao 125105, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; Dilated convolution; Channel attention; Multiscale feature fusion; Spatial-spectral attention;
D O I
10.1016/j.asr.2024.08.049
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Hyperspectral imaging is an image obtained by combining spectral detection technology and imaging technology, which can collect electromagnetic spectra in the wavelength range of visible light to near-infrared. It is an important research content in the field of ground observation in hyperspectral remote sensing. However, hyperspectral image face significant challenges in classification task due to their high spectral dimensions, lack of labeled samples, and strong correlation between bands. In order to fully extract features from both spectral and spatial dimensions and improve classification accuracy in the case of limited training samples, a multiscale dilated attention network is proposed for hyperspectral image classification. First, a three-dimensional convolutional layer is used to extract the shallow features of the image. Then, a multiscale dilated attention module is proposed by combining dilated convolution and channel attention. Using ordinary convolution and dilated convolution to form different receptive fields. Channel attention is used to remodel the obtained multiscale features, enhancing the inter-channel correlation. After that, a multiscale spatial-spectral attention module is constructed using multiple asymmetric convolutions to obtain spatial and spectral attention features at different positions, further enhancing important feature suppression over non-important features. Finally, using softmax to classify the obtained features. Using Indian Pines, Pavia University, KSC and University of Houston as experimental datasets, the overall classification accuracy of this paper's method achieved 98.97%, 99.14%, 99.45%, and 98.56% respectively, using only 5%, 1%, 10%, and 10% of training samples per class. Compared with seven advanced classification methods, the experimental results show that the proposed method can achieve the highest classification accuracy with limited training samples. (c) 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:5530 / 5547
页数:18
相关论文
共 50 条
  • [41] Multiscale graph convolution residual network for hyperspectral image classification
    Li, Ao
    Sun, Yuegong
    Feng, Cong
    Cheng, Yuan
    Xi, Liang
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (01)
  • [42] A global+ multiscale hybrid network for hyperspectral image classification
    Zhao, Anqi
    Wang, Ce
    Li, Xinghua
    REMOTE SENSING LETTERS, 2023, 14 (09) : 1002 - 1010
  • [43] Multiscale Dual-Branch Residual Spectral-Spatial Network With Attention for Hyperspectral Image Classification
    Ghaderizadeh, Saeed
    Abbasi-Moghadam, Dariush
    Sharifi, Alireza
    Tariq, Aqil
    Qin, Shujing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5455 - 5467
  • [44] Spatial Attention Guided Residual Attention Network for Hyperspectral Image Classification
    Li, Ningyang
    Wang, Zhaohui
    IEEE ACCESS, 2022, 10 : 9830 - 9847
  • [45] Dilated Convolutional Neural Network for Hyperspectral Image Feature Extraction and Classification
    Zhang Feng-zhe
    Xiao Lu
    Wang Hai-bin
    Gao Hua-yu
    Wang Jun-xiang
    Lu Chao
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [46] Densely Connected Pyramidal Dilated Convolutional Network for Hyperspectral Image Classification
    Zhao, Feng
    Zhang, Junjie
    Meng, Zhe
    Liu, Hanqiang
    REMOTE SENSING, 2021, 13 (17)
  • [47] Multiscale Neighborhood Attention Transformer With Optimized Spatial Pattern for Hyperspectral Image Classification
    Qiao, Xin
    Roy, Swalpa Kumar
    Huang, Weimin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] Lightweight Multiscale Neural Architecture Search With SpectralSpatial Attention for Hyperspectral Image Classification
    Cao, Chunhong
    Xiang, Han
    Song, Wei
    Yi, Hongbo
    Xiao, Fen
    Gao, Xieping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [49] Pyramidal Multiscale Convolutional Network With Polarized Self-Attention for Pixel-Wise Hyperspectral Image Classification
    Ge, Haimiao
    Wang, Liguo
    Liu, Moqi
    Zhao, Xiaoyu
    Zhu, Yuexia
    Pan, Haizhu
    Liu, Yanzhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [50] Pyramidal Multiscale Convolutional Network With Polarized Self-Attention for Pixel-Wise Hyperspectral Image Classification
    Ge, Haimiao
    Wang, Liguo
    Liu, Moqi
    Zhao, Xiaoyu
    Zhu, Yuexia
    Pan, Haizhu
    Liu, Yanzhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61