A pommaret division algorithm for computing grobner bases in boolean rings

被引:0
|
作者
Gerdt, Vladimir P. [1 ]
Zinin, Mikhail V. [1 ]
机构
[1] Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna, Russia
关键词
D O I
10.1145/1390768.1390784
中图分类号
学科分类号
摘要
In this paper an involutive algorithm for construction of Grobner bases in Boolean rings is presented. The algorithm exploits the Pommaret monomial division as an involutive division. In distinction to other approaches and due to special properties of Pommaret division the algorithm allows to perform the Grobner basis computation directly in a Boolean ring which can be defined as the quotient ring F2[x1,..., xn] / 12 + x1,..., xn2 + xn. Some related cardinality bounds for Pommaret and Grobner bases are derived. Efficiency of our first implementation of the algorithm is illustrated by a number of serial benchmarks.
引用
收藏
相关论文
共 50 条
  • [41] ON THE COMPLEXITY OF COMPUTING CRITICAL POINTS WITH GROBNER BASES
    Spaenlehauer, Pierre-Jean
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) : 1382 - 1401
  • [42] Computing homology using generalized Grobner bases
    Hall, Becky Eide
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 54 : 59 - 71
  • [43] Opal: A system for computing noncommutative Grobner bases
    Green, EL
    Heath, LS
    Keller, BJ
    REWRITING TECHNIQUES AND APPLICATIONS, 1997, 1232 : 331 - 334
  • [44] Computing Boolean Border Bases
    Horacek, Jan
    Kreuzer, Martin
    Ekossono, Ange-Salome Messeng
    PROCEEDINGS OF 2016 18TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 465 - 472
  • [45] Towards a certified and efficient computing of Grobner bases
    Jorge, JS
    Gulías, VM
    Freire, JL
    Sánchez, JJ
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2005, 2005, 3643 : 111 - 120
  • [46] COMPUTING GROBNER BASES AND INVARIANTS OF THE SYMMETRIC ALGEBRA
    La Barbiera, M.
    Restuccia, G.
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 777 - 789
  • [47] Computing generic bivariate Grobner bases with MATHEMAGIX
    Larrieu, Robin
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2019, 53 (02): : 41 - 44
  • [48] Computing Grobner Bases within Linear Algebra
    Suzuki, Akira
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, PROCEEDINGS, 2009, 5743 : 310 - 321
  • [49] An efficient method for computing comprehensive Grobner bases
    Kapur, Deepak
    Sun, Yao
    Wang, Dingkang
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 52 : 124 - 142
  • [50] GROBNER BASES FOR IDEALS IN UNIVARIATE POLYNOMIAL RINGS OVER VALUATION RINGS
    Roslavcev, Maja
    MATEMATICKI VESNIK, 2021, 73 (03): : 183 - 190