A pommaret division algorithm for computing grobner bases in boolean rings

被引:0
|
作者
Gerdt, Vladimir P. [1 ]
Zinin, Mikhail V. [1 ]
机构
[1] Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna, Russia
关键词
D O I
10.1145/1390768.1390784
中图分类号
学科分类号
摘要
In this paper an involutive algorithm for construction of Grobner bases in Boolean rings is presented. The algorithm exploits the Pommaret monomial division as an involutive division. In distinction to other approaches and due to special properties of Pommaret division the algorithm allows to perform the Grobner basis computation directly in a Boolean ring which can be defined as the quotient ring F2[x1,..., xn] / 12 + x1,..., xn2 + xn. Some related cardinality bounds for Pommaret and Grobner bases are derived. Efficiency of our first implementation of the algorithm is illustrated by a number of serial benchmarks.
引用
收藏
相关论文
共 50 条
  • [31] Grobner bases and behaviors over finite rings
    Kuijper, Margreta
    Schindelar, Kristina
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 8101 - 8106
  • [32] A NOTE ON MULTIVARIATE POLYNOMIAL DIVISION AND GROBNER BASES
    Lipkovski, Aleksandar T.
    Zeada, Samira
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 97 (111): : 43 - 48
  • [33] GROBNER BASES AND STANLEY DECOMPOSITIONS OF DETERMINANTAL RINGS
    STURMFELS, B
    MATHEMATISCHE ZEITSCHRIFT, 1990, 205 (01) : 137 - 144
  • [34] GROBNER BASES OF MODULES OVER REDUCTION RINGS
    STIFTER, S
    JOURNAL OF ALGEBRA, 1993, 159 (01) : 54 - 63
  • [35] Dynamical Grobner bases over Dedekind rings
    Kacem, Amina Hadj
    Yengui, Ihsen
    JOURNAL OF ALGEBRA, 2010, 324 (01) : 12 - 24
  • [36] F4-invariant algorithm for computing SAGBI-Grobner bases
    Boroujeni, Marziyeh
    Bashi, Abdolali
    Rahmany, Sajjad
    Valibouze, Annick
    THEORETICAL COMPUTER SCIENCE, 2015, 573 : 54 - 62
  • [37] Termination of algorithm for computing relative Grobner bases and difference differential dimension polynomials
    Huang, Guanli
    Zhou, Meng
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (03) : 635 - 648
  • [38] APPLYING BUCHBERGER'S CRITERIA FOR COMPUTING GROBNER BASES OVER FINITE-CHAIN RINGS
    Hashemi, Amir
    Alvandi, Parisa
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (07)
  • [39] A Survey on Algorithms for Computing Comprehensive Grobner Systems and Comprehensive Grobner Bases
    Lu Dong
    Sun Yao
    Wang Dingkang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (01) : 234 - 255
  • [40] A HYBRID GROBNER BASES APPROACH TO COMPUTING POWER INTEGRAL BASES
    Robertson, L.
    Russell, R.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (02) : 427 - 437