Geometric neural operators (gnps) for data-driven deep learning in non-euclidean settings

被引:0
|
作者
Quackenbush, B. [1 ]
Atzberger, P. J. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara UCSB, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara UCSB, Dept Math, Dept Mech Engn, Santa Barbara, CA 93106 USA
来源
基金
美国国家科学基金会;
关键词
neural operator; deep learning; geometric methods; partial differential equations; inverse problems; data-driven methods; UNIVERSAL APPROXIMATION; NONLINEAR OPERATORS;
D O I
10.1088/2632-2153/ad8980
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Geometric Neural Operators (GNPs) for data-driven deep learning of geometric features for tasks in non-euclidean settings. We present a formulation for accounting for geometric contributions along with practical neural network architectures and factorizations for training. We then demonstrate how GNPs can be used (i) to estimate geometric properties, such as the metric and curvatures of surfaces, (ii) to approximate solutions of geometric partial differential equations on manifolds, and (iii) to solve Bayesian inverse problems for identifying manifold shapes. These results show a few ways GNPs can be used for incorporating the roles of geometry in the data-driven learning of operators.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Counting Apples and Oranges With Deep Learning: A Data-Driven Approach
    Chen, Steven W.
    Shivakumar, Shreyas S.
    Dcunha, Sandeep
    Das, Jnaneshwar
    Okon, Edidiong
    Qu, Chao
    Taylor, Camillo J.
    Kumar, Vijay
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (02): : 781 - 788
  • [32] A data-driven deep learning approach for options market making
    Lai, Qianhui
    Gao, Xuefeng
    Li, Lingfei
    QUANTITATIVE FINANCE, 2021,
  • [33] Data-Driven Resource Allocation for Deep Learning in IoT Networks
    Chun, Chang-Jae
    Jeong, Cheol
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 2082 - 2096
  • [34] A data-driven deep learning approach for options market making
    Lai, Qianhui
    Gao, Xuefeng
    Li, Lingfei
    QUANTITATIVE FINANCE, 2023, 23 (05) : 777 - 797
  • [35] Deep reinforcement learning for data-driven adaptive scanning in ptychography
    Marcel Schloz
    Johannes Müller
    Thomas C. Pekin
    Wouter Van den Broek
    Jacob Madsen
    Toma Susi
    Christoph T. Koch
    Scientific Reports, 13
  • [36] Learning Data-Driven Propagation Mechanism for Graph Neural Network
    Wu, Yue
    Hu, Xidao
    Fan, Xiaolong
    Ma, Wenping
    Gao, Qiuyue
    ELECTRONICS, 2023, 12 (01)
  • [37] Data-Driven Impulse Response Regularization via Deep Learning
    Andersson, Carl
    Wahlstrom, Niklas
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2018, 51 (15): : 1 - 6
  • [38] Deep Learning Framework for Data-driven Soft Sensor Modeling
    Yang, Yinghua
    Feng, Jiajun
    Liu, Xiaozhi
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 918 - 922
  • [39] Data-Driven Nonlinear Modal Analysis: A Deep Learning Approach
    Li, Shanwu
    Yang, Yongchao
    NONLINEAR STRUCTURES & SYSTEMS, VOL 1, 2023, : 229 - 231
  • [40] Data-Driven Intelligent Efficient Synaptic Storage for Deep Learning
    Edstrom, Jonathon
    Gong, Yifu
    Chen, Dongliang
    Wang, Jinhui
    Gong, Na
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (12) : 1412 - 1416