Geometric neural operators (gnps) for data-driven deep learning in non-euclidean settings

被引:0
|
作者
Quackenbush, B. [1 ]
Atzberger, P. J. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara UCSB, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara UCSB, Dept Math, Dept Mech Engn, Santa Barbara, CA 93106 USA
来源
基金
美国国家科学基金会;
关键词
neural operator; deep learning; geometric methods; partial differential equations; inverse problems; data-driven methods; UNIVERSAL APPROXIMATION; NONLINEAR OPERATORS;
D O I
10.1088/2632-2153/ad8980
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Geometric Neural Operators (GNPs) for data-driven deep learning of geometric features for tasks in non-euclidean settings. We present a formulation for accounting for geometric contributions along with practical neural network architectures and factorizations for training. We then demonstrate how GNPs can be used (i) to estimate geometric properties, such as the metric and curvatures of surfaces, (ii) to approximate solutions of geometric partial differential equations on manifolds, and (iii) to solve Bayesian inverse problems for identifying manifold shapes. These results show a few ways GNPs can be used for incorporating the roles of geometry in the data-driven learning of operators.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Data-driven performance metrics for neural network learning
    Alessandri, Angelo
    Gaggero, Mauro
    Sanguineti, Marcello
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023,
  • [22] Data-driven robust optimization using deep neural networks
    Goerigk, Marc
    Kurtz, Jannis
    COMPUTERS & OPERATIONS RESEARCH, 2023, 151
  • [23] Data-driven inverse modelling through neural network (deep learning) and computational heat transfer
    Tamaddon-Jahromi, Hamid Reza
    Chakshu, Neeraj Kavan
    Sazonov, Igor
    Evans, Llion M.
    Thomas, Hywel
    Nithiarasu, Perumal
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 369
  • [24] Data-Driven Sparse Structure Selection for Deep Neural Networks
    Huang, Zehao
    Wang, Naiyan
    COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 317 - 334
  • [25] Deep neural networks for data-driven LES closure models
    Beck, Andrea
    Flad, David
    Munz, Claus-Dieter
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398
  • [26] FedGCN: Federated Learning-Based Graph Convolutional Networks for Non-Euclidean Spatial Data
    Hu, Kai
    Wu, Jiasheng
    Li, Yaogen
    Lu, Meixia
    Weng, Liguo
    Xia, Min
    MATHEMATICS, 2022, 10 (06)
  • [27] Active Learning of Dynamics for Data-Driven Control Using Koopman Operators
    Abraham, Ian
    Murphey, Todd D.
    IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (05) : 1071 - 1083
  • [28] Data-driven learning of Mori-Zwanzig operators for isotropic turbulence
    Tian, Yifeng
    Lin, Yen Ting
    Anghel, Marian
    Livescu, Daniel
    PHYSICS OF FLUIDS, 2021, 33 (12)
  • [29] Deep reinforcement learning for data-driven adaptive scanning in ptychography
    Schloz, Marcel
    Mueller, Johannes
    Pekin, Thomas C.
    Van den Broek, Wouter
    Madsen, Jacob
    Susi, Toma
    Koch, Christoph T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [30] A Data-Driven Approach for Grid Synchronization Based on Deep Learning
    Miranbeigi, Mohammadreza
    Kandula, Prasad
    Divan, Deepak
    2021 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2021, : 2985 - 2991